
© Copyright 1993, 1996 National Instruments Corporation.
All Rights Reserved.

NI-488.2TM

Function Reference Manual
for DOS/Windows

August 1996 Edition

Part Number 320702C-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (512) 794-5678

Branch Offices:
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,
Denmark 45 76 26 00, Finland 90 527 2321, France 01 48 14 24 24,
Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 5734815
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico 95 800 010 0793, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70,
Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

Limited Warranty

The media on which you receive National Instruments software are warranted not to fail
to execute programming instructions, due to defects in materials and workmanship, for a
period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media
that do not execute programming instructions if National Instruments receives notice of
such defects during the warranty period. National Instruments does not warrant that the
operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and
clearly marked on the outside of the package before any equipment will be accepted for
warranty work. National Instruments will pay the shipping costs of returning to the
owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The
document has been carefully reviewed for technical accuracy. In the event that technical
or typographical errors exist, National Instruments reserves the right to make changes to
subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall
National Instruments be liable for any damages arising out of or related to this document
or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE
ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF
THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments
will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year
after the cause of action accrues. National Instruments shall not be liable for any delay
in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by
owner's failure to follow the National Instruments installation, operation, or maintenance
instructions; owner's modification of the product; owner's abuse, misuse, or negligent
acts; and power failure or surges, fire, flood, accident, actions of third parties, or other
events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any
form, electronic or mechanical, including photocopying, recording, storing in an
information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks

NI-488® and NI-488.2™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective
companies.

WARNING REGARDING MEDICAL AND CLINICAL
USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to
ensure a level of reliability suitable for use in treatment and diagnosis of humans.
Applications of National Instruments products involving medical or clinical treatment
can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by properly
trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments
products are being used. National Instruments products are NOT intended to be a
substitute for any form of established process, procedure, or equipment used to monitor
or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corp. v NI-488.2 FRM for DOS/Windows

Contents

About This Manual ... ix
How to Use This Manual Set ... ix
Organization of This Manual ... x
Conventions Used in This Manual... xi
Related Documentation ... xii
Customer Communication ... xii

Chapter 1
NI-488 Functions .. 1-1

Function Names ... 1-1
Purpose... 1-1
DOS Format ... 1-1
Windows Format ... 1-2
Input and Output .. 1-2
Description ... 1-2
Examples.. 1-2
Possible Errors ... 1-2
List of NI-488 Functions ... 1-3

IBASK ... 1-7
IBBNA... 1-17
IBCAC ... 1-19
IBCLR ... 1-21
IBCMD.. 1-23
IBCMDA ... 1-25
IBCONFIG .. 1-28
IBDEV ... 1-38
IBDMA.. 1-41
IBEOS ... 1-43
IBEOT ... 1-46
IBEVENT.. 1-48
IBFIND.. 1-51
IBGTS ... 1-53
IBIST ... 1-55
IBLINES.. 1-57
IBLN.. 1-60
IBLOC ... 1-63
IBONL ... 1-65
IBPAD ... 1-67
IBPCT.. 1-69
IBPPC.. 1-71
IBRD ... 1-74
IBRDA... 1-77
IBRDF ... 1-80
IBRDI .. 1-83

Contents

NI-488.2 FRM for DOS/Windows vi © National Instruments Corp.

IBRDIA ... 1-86
IBRPP.. 1-90
IBRSC ... 1-92
IBRSP.. 1-94
IBRSV ... 1-97
IBSAD ... 1-99
IBSIC ... 1-101
IBSRE.. 1-103
IBSRQ ... 1-105
IBSTOP ... 1-106
IBTMO .. 1-108
IBTRAP ... 1-111
IBTRG ... 1-113
IBWAIT... 1-115
IBWRT .. 1-119
IBWRTA ... 1-122
IBWRTF.. 1-125
IBWRTI ... 1-128
IBWRTIA.. 1-131

Chapter 2
NI-488.2 Routines ... 2-1

Routine Names... 2-1
Purpose... 2-1
DOS Format ... 2-1
Windows Format ... 2-2
Input and Output Parameters ... 2-2
Description ... 2-2
Examples.. 2-2
Possible Errors ... 2-3
List of Available NI-488.2 Routines ... 2-3
AllSpoll .. 2-5
DevClear .. 2-7
DevClearList .. 2-9
EnableLocal ... 2-11
EnableRemote .. 2-13
FindLstn ... 2-15
FindRQS .. 2-18
GenerateREQF ... 2-20
GenerateREQT... 2-22
GoToMultAddr .. 2-24
PassControl .. 2-33
PPoll ... 2-35
PPollConfig.. 2-37
PPollUnconfig.. 2-39
RcvRespMsg.. 2-41
ReadStatusByte .. 2-44

Contents

© National Instruments Corp. vii NI-488.2 FRM for DOS/Windows

Receive... 2-46
ReceiveSetup ... 2-49
ResetSys ... 2-51
Send ... 2-53
SendCmds .. 2-56
SendDataBytes ... 2-58
SendIFC ... 2-61
SendList ... 2-63
SendLLO.. 2-66
SendSetup .. 2-68
SetRWLS ... 2-70
TestSRQ ... 2-72
TestSys .. 2-74
Trigger ... 2-77
TriggerList ... 2-79
WaitSRQ.. 2-81

Appendix A
Multiline Interface Messages ... A-1

Appendix B
Status Word Conditions .. B-1

Appendix C
Error Codes and Solutions ... C-1

Appendix D
Customer Communication ... D-1

Glossary... Glossary-1

Index ... Index-1

Tables

Table 1-1. List of NI-488 Device-Level Functions ... 1-3
Table 1-2. List of NI-488 Board-Level Functions .. 1-5
Table 1-3. ibask Board Configuration Parameter Options .. 1-10
Table 1-4. ibask Device Configuration Parameter Options 1-15
Table 1-5. ibconfig Board Configuration Parameter Options 1-31
Table 1-6. ibconfig Device Configuration Parameter Options 1-35
Table 1-7. EOS Configurations ... 1-44
Table 1-8. Timeout Code Values .. 1-110
Table 1-9. Wait Mask Layout ... 1-118

Table 2-1. List of NI-488.2 Routines .. 2-3

Contents

NI-488.2 FRM for DOS/Windows viii © National Instruments Corp.

Table B-1. Status Word Bits ... B-1

Table C-1. GPIB Error Codes ... C-1

© National Instruments Corp. ix NI-488.2 FRM for DOS/Windows

About This Manual

This manual describes the NI-488 functions and the NI-488.2 routines that comprise the
NI-488.2 software package for DOS/Windows. The NI-488.2 software package is meant
to be used with Microsoft DOS version 3.0 or higher or with Microsoft Windows version
3.0 or higher. This manual assumes that you are already familiar with the DOS or
Windows operating system.

For LabWindows/CVI users, this manual serves as a function reference for the GPIB and
GPIB-488.2 libraries, which share the same C syntax as the NI-488.2 routines and NI-488
functions.

How to Use This Manual Set

NI-488.2 User
Manual

Application
Development
and Examples

Getting Started
Manual

Novice
Users

Installation and
Configuration

NI-488.2 Function
Reference Manual

Experienced
Users

Function
and Routine
Descriptions

Use the getting started manual to install and configure your GPIB hardware and NI-488.2
software for DOS or Windows.

Use the NI-488.2 User Manual for DOS or NI-488.2 User Manual for Windows to learn
the basics of GPIB and how to develop an application program. The user manual also
contains debugging information and detailed examples.

About This Manual

NI-488.2 FRM for DOS/Windows x © National Instruments Corp.

Use the NI-488.2 Function Reference Manual for DOS/Windows for specific NI-488
function and NI-488.2 routine information, such as format, parameters, and possible
errors.

If you ordered a kit from National Instruments that includes the GPIB analyzer software,
you also received documentation for the GPIB analyzer. You can only use the GPIB
analyzer in Windows.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, NI-488 Functions, includes a listing of the available NI-488 functions and
then describes the purpose, format, input and output parameters, and possible errors for
each function.

• Chapter 2, NI-488.2 Routines, includes a listing of the available NI-488.2 routines and
then describes the purpose, format, input and output parameters, and possible errors for
each routine.

• Appendix A, Multiline Interface Messages, contains a multiline interface message
reference list, which describes the mnemonics and messages that correspond to the
interface functions. These multiline interface messages are sent and received with
ATN TRUE.

• Appendix B, Status Word Conditions, gives a detailed description of the conditions
reported in the status word, ibsta.

• Appendix C, Error Codes and Solutions, lists a description of each error, some
conditions under which it might occur, and possible solutions.

• Appendix D, Customer Communication, contains forms you can use to request help
from National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this manual,
including abbreviations, acronyms, metric prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this manual, including
the page where you can find each one.

About This Manual

© National Instruments Corp. xi NI-488.2 FRM for DOS/Windows

Conventions Used in This Manual

The following conventions are used in this manual:

italic Italic text denotes emphasis, a cross reference, or an
introduction to a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that are to be
literally input from the keyboard, sections of code,
programming examples, and syntax examples. This font is
also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device
names, functions, constants, variables, filenames, and
extensions, and for statements and comments taken from
program code.

< > Angle brackets enclose the name of a key on the keyboard–for
example, <PageDown>.

IEEE 488 and IEEE 488 and IEEE 488.2 are used throughout this manual
IEEE 488.2 to refer to the ANSI/IEEE Standard 488.1-1987 and the

ANSI/IEEE Standard 488.2-1992, respectively, which define
the GPIB.

NI-488.2 software The term NI-488.2 software is used throughout this manual to
refer to the NI-488.2 software for DOS or Windows unless
otherwise noted.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in
the Glossary.

About This Manual

NI-488.2 FRM for DOS/Windows xii © National Instruments Corp.

Related Documentation

The following documents contain information that you may find helpful as you read this
manual:

• Microsoft MS-DOS User’s Guide

• Microsoft Windows User's Guide

• Microsoft Windows Software Development Kit: Programmer's Reference

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols, and
Common Commands

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We
are interested in the applications you develop with our products, and we want to help if
you have problems with them. To make it easy for you to contact us, this manual
contains comment and configuration forms for you to complete. These forms are in
Appendix D, Customer Communication, at the end of this manual.

© National Instruments Corp. 1-1 NI-488.2 FRM for DOS/Windows

Chapter 1
NI-488 Functions

This chapter lists the available NI-488 functions and describes the purpose, format, input
and output parameters, and possible errors for each function.

For general programming information, refer to the NI-488.2 user manual. The user
manual explains how to develop and debug your program. It also describes the example
programs included with your NI-488.2 software.

Function Names

The functions in this chapter are listed alphabetically. Each function is designated as
board level, device level, or both.

Purpose

Each function description includes a brief statement of the purpose of the function.

DOS Format

The DOS format is given for each of the languages supported by the NI-488.2 software:

• Microsoft C (version 5.1 or higher) and Borland C++ (version 2.0 or higher)

Note: The C language interface does not support the Borland C++ huge memory
model. Contact National Instruments for the Borland C++ huge memory
model language interface.

• Microsoft Professional BASIC version 7.0 or higher and Microsoft Visual Basic for
DOS version 1.0 or higher

• Microsoft QuickBASIC version 4.0 or higher

• BASICA and GWBASIC

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-2 © National Instruments Corp.

Windows Format

The Windows format is given for the following:

• Microsoft C (version 5.1 or higher), LabWindows/CVI for Windows, and Borland C++
(version 2.0 or higher)

• Microsoft Visual Basic version 1.0 or higher

• Direct entry into the Windows Dynamic Link Library gpib.dll

- Direct entry for Microsoft C and Borland C++

- Direct entry for Microsoft Visual Basic

Input and Output

The input and output parameters for each function are listed. Function Return describes
the return value of the function. The return value of the NI-488 functions is usually the
value of ibsta.

Description

The description section gives details about the purpose and effect of each function.

Examples

Some function descriptions include sample code showing how to use the function. For
more detailed and complete examples, refer to the example programs that are included
with your NI-488.2 software. The example programs are described in Chapter 2 of the
NI-488.2 user manual.

Possible Errors

Each function description includes a list of errors that could occur when the function is
invoked.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-3 NI-488.2 FRM for DOS/Windows

List of NI-488 Functions

The following tables contain alphabetical lists of each NI-488 function along with its
purpose. Table 1-1 lists the device-level functions. Table 1-2 lists the board-level
functions.

Table 1-1. List of NI-488 Device-Level Functions

Function Purpose
ibask Return information about software configuration parameters

ibbna Change the access board of a device

ibclr Clear a specific device

ibconfig Change the software configuration parameters

ibdev Open and initialize a device

ibeos Configure the end-of-string (EOS) termination mode or character

ibeot Enable or disable the automatic assertion of the GPIB EOI line at
the end of write I/O operations

ibln Check for the presence of a device on the bus

ibloc Go to local

ibonl Place the device online or offline

ibpad Change the primary address

ibpct Pass control to another GPIB device with Controller capability

ibppc Parallel poll configure

ibrd Read data from a device into a user buffer

ibrda Read data asynchronously from a device into a user buffer

ibrdf Read data from a device into a file

ibrdi Read data from a device into a user integer buffer

ibrdia Read data asynchronously from a device into a user integer buffer

ibrpp Conduct a parallel poll

ibrsp Conduct a serial poll

ibsad Change or disable the secondary address

ibstop Abort asynchronous I/O operation

(continues)

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-4 © National Instruments Corp.

Table 1-1. List of NI-488 Device-Level Functions (Continued)

Function Purpose
ibtmo Change or disable the I/O timeout period

ibtrg Trigger selected device

ibwait Wait for GPIB events

ibwrt Write data to a device from a user buffer

ibwrta Write data asynchronously to a device from a user buffer

ibwrtf Write data to a device from a file

ibwrti Write data to a device from a user integer buffer

ibwrtia Write data asynchronously to a device from a user integer buffer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-5 NI-488.2 FRM for DOS/Windows

Table 1-2. List of NI-488 Board-Level Functions

Function Purpose
ibask Return information about software configuration parameters

ibcac Become Active Controller

ibcmd Send GPIB commands

ibcmda Send GPIB commands asynchronously

ibconfig Change the software configuration parameters

ibdma Enable or disable DMA

ibeos Configure the end-of-string (EOS) termination mode or character

ibeot Enable or disable the automatic assertion of the GPIB EOI line at
the end of write I/O operations

ibevent Return the oldest event

ibfind Open and initialize a GPIB board

ibgts Go from Active Controller to Standby

ibist Set or clear the board individual status bit for parallel polls

iblines Return the status of the eight GPIB control lines

ibln Check for the presence of a device on the bus

ibloc Go to local

ibonl Place the interface board online or offline

ibpad Change the primary address

ibppc Parallel poll configure

ibrd Read data from a device into a user buffer

ibrda Read data asynchronously from a device into a user buffer

ibrdf Read data from a device into a file

ibrdi Read data from a device into a user integer buffer

ibrdia Read data asynchronously from a device into a user integer buffer

ibrpp Conduct a parallel poll

(continues)

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-6 © National Instruments Corp.

Table 1-2. List of NI-488 Board-Level Functions (Continued)

Function Purpose
ibrsc Request or release system control

ibrsv Request service and change the serial poll status byte

ibsad Change or disable the secondary address

ibsic Assert interface clear

ibsre Set or clear the Remote Enable (REN) line

ibsrq Request an SRQ "interrupt routine"

ibstop Abort asynchronous I/O operation

ibtmo Change or disable the I/O timeout period

ibtrap Configure the Applications Monitor

ibwait Wait for GPIB events

ibwrt Write data to a device from a user buffer

ibwrta Write data asynchronously to a device from a user buffer

ibwrtf Write data to a device from a file

ibwrti Write data to a device from a user integer buffer

ibwrtia Write data asynchronously to a device from a user integer buffer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-7 NI-488.2 FRM for DOS/Windows

IBASK Board Level IBASK
Device Level

Purpose

Return information about software configuration parameters.

DOS Format

C

int ibask (int ud, int option, int *value)

QuickBASIC/BASIC

CALL ibask (ud%, option%, value%)
or

status% = ilask (ud%, option%, value%)

BASICA

CALL ibask (ud%, option%, value%)

Windows Format

C

int ibask (int ud, int option, int *value)

Visual Basic

CALL ibask (ud%, option%, value%)
or

status% = ilask (ud%, option%, value%)

Direct Entry with C

DLLibask (int ud, int option, int *value, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibask Lib "gpib.dll"
(byVal ud%, ByVal option%, value%, ibsta%, iberr%, ibcntl&)
 As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-8 © National Instruments Corp.

IBASK Board Level IBASK
Device Level (Continued)

Input

ud Board or device unit descriptor

option Selects the configuration item whose value is being returned

Output

value Current value of the selected configuration item

Function Return The value of ibsta

Description

ibask returns the current value of various configuration parameters for the specified
board or device. The current value of the selected configuration item is returned in the
integer specified by value. Table 1-3 and Table 1-4 list the valid configuration
parameter options for ibask.

Possible Errors

EARG option is not a valid configuration parameter. See the
ibask options listed in Table 1-3 and Table 1-4.

ECAP option is not supported by the driver in its current
configuration.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-9 NI-488.2 FRM for DOS/Windows

IBASK Board Level IBASK
Device Level (Continued)

Table 1-3 lists the options you can use with ibask when ud is a board descriptor or a
board index. The following is an alphabetical list of the option constants included in
Table 1-3.

Constants Values Constants Values

• IbaAUTOPOLL 0x0007

• IbaCICPROT 0x0008

• IbaDMA 0x0012

• IbaEndBitIsNormal 0x001A

• IbaEOSchar 0x000F

• IbaEOScmp 0x000E

• IbaEOSrd 0x000C

• IbaEOSwrt 0x000D

• IbaEOT 0x0004

• IbaEventQueue 0x0015

• IbaHSCableLength 0x001F

• IbaIRQ 0x0009

• IbaIst 0x0020

• IbaPAD 0x0001

• IbaPP2 0x0010

• IbaPPC 0x0005

• IbaPPollTime 0x0019

• IbaReadAdjust 0x0013

• IbaRsv 0x0021

• IbaSAD 0x0002

• IbaSC 0x000A

• IbaSendLLO 0x0017

• IbaSpollBit 0x0016

• IbaSRE 0x000B

• IbaTIMING 0x0011

• IbaTMO 0x0003

• IbaWriteAdjust 0x0014

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-10 © National Instruments Corp.

IBASK Board Level IBASK
Device Level (Continued)

Table 1-3. ibask Board Configuration Parameter Options

Options
(Constants)

Options
(Values) Returned Information

IbaPAD 0x0001 The current primary address of the board.

See ibpad.

IbaSAD 0x0002 The current secondary address of the board.

See ibsad.

IbaTMO 0x0003 The current I/O timeout of the board.

See ibtmo.

IbaEOT 0x0004 zero = The GPIB EOI line is not asserted at the end
of a write operation.

non-zero = EOI is asserted at the end of a write.

See ibeot.

IbaPPC 0x0005 The current parallel poll configuration information
of the board. See ibppc.

IbaAUTOPOLL 0x0007 zero = Automatic serial polling is disabled.

non-zero = Automatic serial polling is enabled.

Refer to the NI-488.2 user manual for more
information about automatic serial polling.

IbaCICPROT 0x0008 zero = The CIC protocol is disabled.

non-zero = The CIC protocol is enabled.

Refer to the NI-488.2 user manual for more
information about device-level calls and bus
management.

IbaIRQ 0x0009 zero = Interrupts are not enabled.

non-zero = Interrupts are enabled.

IbaSC 0x000A zero = The board is not the GPIB System
Controller.

non-zero = The board is the System Controller.

See ibrsc.

(continues)

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-11 NI-488.2 FRM for DOS/Windows

IBASK Board Level IBASK
Device Level (Continued)

Table 1-3. ibask Board Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Returned Information

IbaSRE 0x000B zero = The board does not automatically assert the
GPIB REN line when it becomes the System
Controller.

non-zero = The board automatically asserts REN
when it becomes the System Controller.

See ibrsc and ibsre.

IbaEOSrd 0x000C zero = The EOS character is ignored during read
operations.

non-zero = Read operation is terminated by the
EOS character.

See ibeos.

IbaEOSwrt 0x000D zero = The EOI line is not asserted when the EOS
character is sent during a write operation.

non-zero = The EOI line is asserted when the EOS
character is sent during a write operation.

See ibeos.

IbaEOScmp 0x000E zero = A 7-bit compare is used for all EOS
comparisons.

non-zero = An 8-bit compare is used for all EOS
comparisons.

See ibeos.

IbaEOSchar 0x000F The current EOS character of the board.

See ibeos.

IbaPP2 0x0010 zero = The board is in PP1 mode–remote parallel
poll configuration.

non-zero = The board is in PP2 mode–local parallel
poll configuration.

Refer to the NI-488.2 user manual for more
information about parallel polls.

(continues)

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-12 © National Instruments Corp.

IBASK Board Level IBASK
Device Level (Continued)

Table 1-3. ibask Board Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Returned Information

IbaTIMING 0x0011 The current bus timing of the board.

1 = Normal timing (T1 delay of 2 µs.)

2 = High speed timing (T1 delay of 500 ns.)

3 = Very high speed timing (T1 delay of 350 ns.)

IbaDMA 0x0012 zero = The board will not use DMA for GPIB
transfers.

non-zero = The board will use DMA for GPIB
transfers.

See ibdma.

IbaReadAdjust 0x0013 0 = Read operations do not have pairs of bytes
swapped.

1 = Read operations have each pair of bytes
swapped.

IbaWriteAdjust 0x0014 0 = Write operations do not have pairs of bytes
swapped.

1 = Write operations have each pair of bytes
swapped.

IbaEventQueue 0x0015 zero = The event queue is disabled.

non-zero = The event queue is enabled.

See ibevent.

IbaSpollBit 0x0016 zero = The SPOLL bit of ibsta is disabled.

non-zero = The SPOLL bit of ibsta is enabled.

See the NI-488.2 user manual for information about
Talker/Listener applications.

IbaSendLLO 0x0017 zero = The GPIB LLO command is not sent when a
device is put online-ibfind or ibdev.

non-zero = The LLO command is sent.

(continues)

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-13 NI-488.2 FRM for DOS/Windows

IBASK Board Level IBASK
Device Level (Continued)

Table 1-3. ibask Board Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Returned Information

IbaPPollTime 0x0019 0 = The board uses the standard duration (2 µs)
when conducting a parallel poll.

1 to 17 = The board uses a variable length duration
when conducting a parallel poll. The duration
values correspond to the ibtmo timing values.

IbaEndBitIsNormal 0x001A zero = The END bit of ibsta is set only when
EOI or EOI plus the EOS character is received. If
the EOS character is received without EOI, the
END bit is not set.

non-zero = The END bit is set whenever EOI, EOS,
or EOI plus EOS is received.

IbaHSCableLength 0x001F 0 = High-speed data transfer (HS488) is disabled.

1 to 15 = High-speed data transfer (HS488) is
enabled. The number returned represents the
number of meters of GPIB cable in your system.

See the NI-488.2 user manual for information about
high-speed data transfers (HS488).

IbaIst 0x0020 The individual status (ist) bit of the board.

IbaRsv 0x0021 The current serial poll status byte of the board.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-14 © National Instruments Corp.

IBASK Board Level IBASK
Device Level (Continued)

Table 1-4 lists the options you can use with ibask when ud is a device descriptor or a
device index. The following is an alphabetical list of the option constants included in
Table 1-4.

Constants Values Constants Values

• IbaBNA 0x0200 • IbaReadAdjust 0x0013

• IbaEndBitIsNormal 0x001A • IbaREADDR 0x0006

• IbaEOSchar 0x000F • IbaSAD 0x0002

• IbaEOScmp 0x000E • IbaSPollTime 0x0018

• IbaEOSrd 0x000C • IbaTMO 0x0003

• IbaEOSwrt 0x000D • IbaUnAddr 0x001B

• IbaEOT 0x0004 • IbaWriteAdjust 0x0014

• IbaPAD 0x0001

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-15 NI-488.2 FRM for DOS/Windows

IBASK Board Level IBASK
Device Level (Continued)

Table 1-4. ibask Device Configuration Parameter Options

Options
(Constants)

Options
(Values) Returned Information

IbaPAD 0x0001 The current primary address of the device.
See ibpad.

IbaSAD 0x0002 The current secondary address of the device.
See ibsad.

IbaTMO 0x0003 The current I/O timeout of the device. See ibtmo.

IbaEOT 0x0004 zero = The GPIB EOI line is not asserted at the end
of a write operation.

non-zero = EOI is asserted at the end of a write
operation.

See ibeot.

IbaREADDR 0x0006 zero = No unnecessary addressing is performed
between device-level read and write operations.

non-zero = Addressing is always performed before
a device-level read or write operation.

IbaEOSrd 0x000C zero = The EOS character is ignored during read
operations.
non-zero = Read operation is terminated by the
EOS character.
See ibeos.

IbaEOSwrt 0x000D zero = The EOI line is not asserted when the EOS
character is sent during a write operation.
non-zero = The EOI line is asserted when the EOS
character is sent during a write operation.
See ibeos.

IbaEOScmp 0x000E zero = A 7-bit compare is used for all EOS
comparisons.
non-zero = An 8-bit compare is used for all EOS
comparisons.
See ibeos.

(continues)

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-16 © National Instruments Corp.

IBASK Board Level IBASK
Device Level (Continued)

Table 1-4. ibask Device Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Returned Information

IbaEOSchar 0x000F The current EOS character of the device.
See ibeos.

IbaReadAdjust 0x0013 0 = Read operations do not have pairs of bytes
swapped.
1 = Read operations have each pair of bytes
swapped.

IbaWriteAdjust 0x0014 0 = Write operations do not have pairs of bytes
swapped.

1 = Write operations have each pair of bytes
swapped.

IbaSPollTime 0x0018 The length of time the driver waits for a serial poll
response when polling the device. The length of
time is represented by the ibtmo timing values.

IbaEndBitIsNormal 0x001A zero = The END bit of ibsta is set only when
EOI or EOI plus the EOS character is received. If
the EOS character is received without EOI, the
END bit is not set.

non-zero = The END bit is set whenever EOI, EOS,
or EOI plus EOS is received.

IbaUnAddr 0x001B zero = The GPIB commands Untalk (UNT) and
Unlisten (UNL) are not sent after each device-level
read and write operation.

non-zero = The UNT and UNL commands are sent
after each device-level read and write operation.

IbaBNA 0x0200 The index of the GPIB access board used by the
given device descriptor.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-17 NI-488.2 FRM for DOS/Windows

IBBNA Device Level IBBNA

Purpose

Change the access board of a device.

DOS Format

C

int ibbna (int ud, char *bname)

QuickBASIC/BASIC

CALL ibbna (ud%, bname$) or status% = ilbna (ud%, bname$)

BASICA

CALL ibbna (ud%, bname$)

Windows Format

C

int ibbna (int ud, char *bname)

Visual Basic

CALL ibbna (ud%, bname$) or status% = ilbna (ud%, bname$)

Direct Entry with C

DLLibbna (int ud, char _far *bname, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibbna Lib "gpib.dll"
(ByVal ud%, ByVal bname$, ibsta%, iberr%, ibcntl&) As
Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-18 © National Instruments Corp.

IBBNA Device Level IBBNA
(Continued)

Input

 ud A device unit descriptor

 bname An access board name, for example, gpib0

Output

Function Return The value of ibsta

Description

ibbna assigns the device described by ud to the access board described by bname. All
subsequent bus activity with device ud occurs through the access board bname. If the
call succeeds, iberr contains the previous access board index.

Possible Errors

EARG Either ud does not refer to a device or bname does not refer
to a valid board name.

ECIC The access board is not CIC. See the Device-Level Calls and
Bus Management section in the NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The access board is not installed or is not properly configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-19 NI-488.2 FRM for DOS/Windows

IBCAC Board Level IBCAC

Purpose

Become Active Controller.

DOS Format

C

int ibcac (int ud, int v)

QuickBASIC/BASIC

CALL ibcac (ud%, v%) or status% = ilcac (ud%, v%)

BASICA

CALL ibcac (ud%, v%)

Windows Format

C

int ibcac (int ud, int v)

Visual Basic

CALL ibcac (ud%, v%) or status% = ilcac (ud%, v%)

Direct Entry with C

DLLibcac (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibcac Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-20 © National Instruments Corp.

IBCAC Board Level IBCAC
(Continued)

Input

 ud A board unit descriptor

 v Determines if control is to be taken asynchronously or
synchronously

Output

Function Return The value of ibsta

Description

Using ibcac, the designated GPIB board attempts to become the Active Controller by
asserting ATN. If v is zero, the GPIB board takes control asynchronously. If v is non-
zero, the GPIB board takes control synchronously. Before you call ibcac, the GPIB
board must already be CIC. To make the board CIC, use the ibsic function.

To take control synchronously, the GPIB board attempts to assert the ATN signal without
corrupting transferred data. If this is not possible, the board takes control
asynchronously.

To take control asynchronously, the GPIB board asserts ATN immediately without regard
for any data transfer currently in progress.

Most applications do not need to use ibcac. Functions that require ATN to be asserted,
such as ibcmd, do so automatically.

Possible Errors

EARG ud is valid but does not refer to an interface board.

ECIC The interface board is not Controller-In-Charge.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-21 NI-488.2 FRM for DOS/Windows

IBCLR Device Level IBCLR

Purpose

Clear a specific device.

DOS Format

C

int ibclr (int ud)

QuickBASIC/BASIC

CALL ibclr (ud%) or status% = ilclr (ud%)

BASICA

CALL ibclr (ud%)

Windows Format

C

int ibclr (int ud)

Visual Basic

CALL ibclr (ud%) or status% = ilclr (ud%)

Direct Entry with C

DLLibclr (int ud, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibclr Lib "gpib.dll"
(ByVal ud%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-22 © National Instruments Corp.

IBCLR Device Level IBCLR
(Continued)

Input

 ud A device unit descriptor

Output

Function Return The value of ibsta

Description

ibclr sends the GPIB Selected Device Clear (SDC) message to the device described by
ud.

Possible Errors

EARG ud is a valid descriptor but does not refer to a device.

EBUS There are no devices connected to the GPIB.

ECIC The access board is not CIC. See the Device-Level Calls and
Bus Management section in Chapter 7 of the NI-488.2 user
manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-23 NI-488.2 FRM for DOS/Windows

IBCMD Board Level IBCMD

Purpose

Send GPIB commands.

DOS Format

C

int ibcmd (int ud, void *cmdbuf, long cnt)

QuickBASIC/BASIC

CALL ibcmd (ud%, cmdbuf$)
or

status% = ilcmd (ud%, cmdbuf$, cnt&)

BASICA

CALL ibcmd (ud%, cmdbuf$)

Windows Format

C

int ibcmd (int ud, void *cmdbuf, long cnt)

Visual Basic

CALL ibcmd (ud%, cmdbuf$)
or

status% = ilcmd (ud%, cmdbuf$, cnt&)

Direct Entry with C

DLLibcmd(int ud, void _far *cmdbuf, long cnt, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibcmd Lib "gpib.dll"
(ByVal ud%, ByVal cmdbuf$, ByVal cnt&, ibsta%, iberr%,
 ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-24 © National Instruments Corp.

IBCMD Board Level IBCMD
(Continued)

Input

 ud A board unit descriptor

 cmdbuf Buffer of command bytes to send

 cnt Number of command bytes to send

Output

Function Return The value of ibsta

Description

ibcmd sends cnt bytes from cmdbuf over the GPIB as command bytes (interface
messages). The number of command bytes transferred is returned in the global variable
ibcntl. Refer to Appendix A, Multiline Interface Messages, for a table of the defined
interface messages.

Command bytes are used to configure the state of the GPIB. They are not used to send
instructions to GPIB devices. Use ibwrt to send device-specific instructions.

Possible Errors

EABO The timeout period expired before all of the command bytes
were sent.

EARG ud is valid but does not refer to an interface board.

ECIC The interface board is not Controller-In-Charge.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners are on the GPIB.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-25 NI-488.2 FRM for DOS/Windows

IBCMDA Board Level IBCMDA

Purpose

Send GPIB commands asynchronously.

DOS Format

C

int ibcmda (int ud, void *cmdbuf, long cnt)

QuickBASIC/BASIC

CALL ibcmda (ud%, cmdbuf$)
or

status% = ilcmda (ud%, cmdbuf$, cnt&)

BASICA

CALL ibcmda (ud%, cmdbuf$)

Windows Format

C

int ibcmda (int ud, void *cmdbuf, long cnt)

Visual Basic

CALL ibcmda (ud%, cmdbuf$)
or

status% = ilcmda (ud%, cmdbuf$, cnt&)

Direct Entry with C

DLLibcmda (int ud, void _far *cmdbuf, long cnt,
int _far *ibsta, int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibcmda Lib "gpib.dll"
(ByVal ud%, ByVal cmdbuf$, ByVal cnt&, ibsta%, iberr%,
 ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-26 © National Instruments Corp.

IBCMDA Board Level IBCMDA
(Continued)

Input

 ud A board unit descriptor

 cmdbuf Buffer of command bytes to send

 cnt Number of command bytes to send

Output

Function Return The value of ibsta

Description

ibcmda sends cnt bytes from cmdbuf over the GPIB as command bytes (interface
messages). The number of command bytes transferred is returned in the global variable
ibcntl. Refer to Appendix A, Multiline Interface Messages, for a table of the defined
interface messages.

Command bytes are used to configure the state of the GPIB. They are not used to send
instructions to GPIB devices. Use ibwrt to send device-specific instructions.

The asynchronous I/O calls (ibcmda, ibrda, ibwrta) are designed so that
applications can perform other non-GPIB operations while the I/O is in progress. Once
the asynchronous I/O has begun, further GPIB calls are strictly limited. Any calls that
would interfere with the I/O in progress are not allowed, the driver returns EOIP in this
case.

Once the I/O is complete, the application must resynchronize with the NI-488.2 driver.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta mask has the CMPL bit set, the driver and
application are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-27 NI-488.2 FRM for DOS/Windows

IBCMDA Board Level IBCMDA
(Continued)

Possible Errors

EARG ud is valid but does not refer to an interface board.

ECIC The interface board is not Controller-In-Charge.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners are on the GPIB.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-28 © National Instruments Corp.

IBCONFIG Board Level IBCONFIG
Device Level

Purpose

Change the software configuration parameters.

DOS Format

C

ibconfig (int ud, int option, int value)

QuickBASIC/BASIC

CALL ibconfig (ud%, option%, value%)
or

status% = ilconfig (ud%, option%, value%)

BASICA

CALL ibconfig (ud%, option%, value%)

Windows Format

C

ibconfig (int ud, int option, int value)

Visual Basic

CALL ibconfig (ud%, option%, value%)
or

status% = ilconfig (ud%, option%, value%)

Direct Entry with C

DLLibconfig (int ud, int option, int value,
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibconfig Lib "gpib.dll"
(ByVal ud%, ByVal option%, ByVal value%, ibsta%, iberr%,
 ibcntl&) As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-29 NI-488.2 FRM for DOS/Windows

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Input

 ud Board or device unit descriptor

 option A parameter that selects the software configuration item

 value The value to which the selected configuration item is to be
changed

Output

Function Return The value of ibsta

Description

ibconfig changes the configuration item to the specified value for the selected board
or device. option may be any of the defined constants in Table 1-5 and value must
be valid for the parameter that you are configuring. The previous setting of the
configured item is return in iberr.

Possible Errors

EARG Either option or value is not valid. See Table 1-5.

ECAP The driver is not able to make the requested change.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-30 © National Instruments Corp.

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-5 lists the options you can use with ibconfig when ud is a board descriptor or
a board index. If the table does not list the default value for a particular option, the
default value is determined by either ibconf in DOS or the GPIB software
configuration utility in Windows.

The following is an alphabetical list of the option constants included in Table 1-5.

Constants Values Constants Values

• IbcAUTOPOLL 0x0007 • IbcPP2 0x0010

• IbcCICPROT 0x0008 • IbcPPC 0x0005

• IbcDMA 0x0012 • IbcPPollTime 0x0019

• IbcEndBitIsNormal 0x001A • IbcReadAdjust 0x0013

• IbcEOSchar 0x000F • IbcRsv 0x0021

• IbcEOScmp 0x000E • IbcSAD 0x0002

• IbcEOSrd 0x000C • IbcSC 0x000A

• IbcEOSwrt 0x000D • IbcSendLLO 0x0017

• IbcEOT 0x0004 • IbcSpollBit 0x0016

• IbcEventQueue 0x0015 • IbcSRE 0x000B

• IbcHSCableLength 0x001F • IbcTIMING 0x0011

• IbcIRQ 0x0009 • IbcTMO 0x0003

• IbcIst 0x0020 • IbcWriteAdjust 0x0014

• IbcPAD 0x0001

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-31 NI-488.2 FRM for DOS/Windows

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-5. ibconfig Board Configuration Parameter Options

Options
(Constants)

Options
(Values) Legal Values

IbcPAD 0x0001 Changes the primary address of the board.
Identical to ibpad.

IbcSAD 0x0002 Changes the secondary address of the board.
Identical to ibsad.

IbcTMO 0x0003 Changes the I/O timeout limit of the board.
Identical to ibtmo.

IbcEOT 0x0004 Changes the data termination mode for write
operations. Identical to ibeot.

IbcPPC 0x0005 Configures the board for parallel polls. Identical to
board-level ibppc.

Default: zero.

IbcAUTOPOLL 0x0007 zero = Disable automatic serial polling.

non-zero = Enable automatic serial polling.

Refer to the NI-488.2 user manual for more
information about automatic serial polling.

IbcCICPROT 0x0008 zero = Disable the CIC protocol.

non-zero = Enable the CIC protocol.

Refer to the NI-488.2 user manual for more
information about the CIC protocol.

IbcIRQ 0x0009 zero = Do not use interrupts.

non-zero = Use interrupts-use the hardware
interrupt level configured through ibconf in
DOS or the GPIB software configuration utility
in Windows.

IbcSC 0x000A Request or release system control. Identical to
ibrsc.

(continues)

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-32 © National Instruments Corp.

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-5. ibconfig Board Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Legal Values

IbcSRE 0x000B Assert the Remote Enable (REN) line. Identical to
ibsre.

Default: zero.

IbcEOSrd 0x000C zero = Ignore EOS character during read
operations.

non-zero = Terminate reads when the EOS
character is read match occurs.

IbcEOSwrt 0x000D zero = Do not assert EOI with the EOS character
during write operations.

non-zero = Assert EOI with the EOS character
during writes operations.

IbcEOScmp 0x000E zero = Use 7 bits for the EOS character
comparison.

non-zero = Use 8 bits for the EOS character
comparison.

IbcEOSchar 0x000F Any 8-bit value. This byte becomes the new EOS
character.

IbcPP2 0x0010 zero = PP1 mode-remote parallel poll
configuration.

non-zero = PP2 mode-local parallel poll
configuration.

Default: zero.

Refer to the NI-488.2 user manual for more
information about parallel polling.

IbcTIMING 0x0011 1 = Normal timing (T1 delay of 2 µs).

2 = High-speed timing (T1 delay of 500 ns).

3 = Very high-speed timing (T1 delay of 350 ns).

The T1 delay is the GPIB source handshake timing.

(continues)

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-33 NI-488.2 FRM for DOS/Windows

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-5. ibconfig Board Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Legal Values

IbcDMA 0x0012 Identical to ibdma.

IbcReadAdjust 0x0013 0 = No byte swapping.

1 = Swap pairs of bytes during a read.

Default: zero.

IbcWriteAdjust 0x0014 0 = No byte swapping.

1 = Swap pairs of bytes during a write.

Default: zero.

IbcEventQueue 0x0015 zero = The event queue is disabled.

non-zero = The event queue is enabled.

Default: zero. See ibevent.

IbcSpollBit 0x0016 zero = The SPOLL bit of ibsta is disabled.

non-zero = The SPOLL bit of ibsta is enabled.

Default: zero.

Refer to the NI-488.2 user manual for information
about Talker/Listener applications.

IbcSendLLO 0x0017 zero = Do not send LLO when putting a device
online –ibfind or ibdev.

non-zero = Send LLO when putting a device
online–ibfind or ibdev.

Default: zero.

IbcPPollTime 0x0019 0 = Use the standard duration (2 µs) when
conducting a parallel poll.

1 to 17 = Use a variable length duration when
conducting a parallel poll. The duration represented
by 1 to 17 corresponds to the ibtmo values.

Default: zero.

(continues)

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-34 © National Instruments Corp.

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-5. ibconfig Board Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Legal Values

IbcEndBitIsNormal 0x001A zero = Do not set the END bit of ibsta when an
EOS match occurs during a read.

non-zero = Set the END bit of ibsta when an
EOS match occurs during a read.

Default: non-zero.

IbcHSCableLength 0x001F 0 = High-speed data transfer (HS488) is disabled.

1 to 15 = The number of meters of GPIB cable in
your system. The NI-488.2 software uses this
information to select the appropriate high-speed
data transfer (HS488) mode.

See the NI-488.2 user manual for information about
high-speed data transfers (HS488).

IbcIst 0x0020 Changes the individual status (ist) bit of the
board. Identical to ibist.

IbcRsv 0x0021 Changes the serial poll status byte of the board.
Identical to ibrsv.

Default: zero.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-35 NI-488.2 FRM for DOS/Windows

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-6 lists the options you can use with ibconfig when ud is a device descriptor
or a device index. If the table does not list the default value for a particular option, the
default value is determined by either ibconf in DOS or the GPIB software
configuration utility in Windows.

The following is an alphabetical list of the option constants included in Table 1-6.

Constants Values Constants Values

• IbcEndBitIsNormal 0x001A • IbcREADDR 0x0006

• IbcEOSchar 0x000F • IbcReadAdjust 0x0013

• IbcEOScmp 0x000E • IbcSAD 0x0002

• IbcEOSrd 0x000C • IbcSPollTime 0x0018

• IbcEOSwrt 0x000D • IbcTMO 0x0003

• IbcEOT 0x0004 • IbcWriteAdjust 0x0014

• IbcPAD 0x0001 • IbcUnAddr 0x001B

Table 1-6. ibconfig Device Configuration Parameter Options

Options
(Constants)

Options
(Values) Legal Values

IbcPAD 0x0001 Changes the primary address of the device.
Identical to ibpad.

IbcSAD 0x0002 Changes the secondary address of the device.
Identical to ibsad.

IbcTMO 0x0003 Changes the device I/O timeout limit. Identical to
ibtmo.

(continues)

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-36 © National Instruments Corp.

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-6. ibconfig Device Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Legal Values

IbcEOT 0x0004 Changes the data termination method for writes.
Identical to ibeot.

IbcREADDR 0x0006 zero = No unnecessary readdressing is performed
between device-level reads and writes.

non-zero = Addressing is always performed before
a device-level read or write.

IbcEOSrd 0x000C non-zero = Terminate reads when the EOS
character is read.

IbcEOSwrt 0x000D zero = Do not send EOI with the EOS character
during write operations.

non-zero = Send EOI with the EOS character
during writes.

IbcEOScmp 0x000E zero = Use seven bits for the EOS character
comparison.

non-zero = Use 8 bits for the EOS character
comparison.

IbcEOSchar 0x000F Any 8-bit value. This byte becomes the new EOS
character.

IbcReadAdjust 0x0013 0 = No byte swapping.

1 = Swap pairs of bytes during a read.

Default: zero.

IbcWriteAdjust 0x0014 0 = No byte swapping.

1 = Swap pairs of bytes during a write.

Default: zero.

(continues)

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-37 NI-488.2 FRM for DOS/Windows

IBCONFIG Board Level IBCONFIG
Device Level (Continued)

Table 1-6. ibconfig Device Configuration Parameter Options (Continued)

Options
(Constants)

Options
(Values) Legal Values

IbcSPollTime 0x0018 0 to 17 = Sets the length of time the driver waits for
a serial poll response byte when polling the given
device. The length of time represented by 0 to 17
corresponds to the ibtmo values.

Default: 11.

IbcEndBitIsNormal 0x001A zero = Do not set the END bit of ibsta when an
EOS match occurs during a read.

non-zero = Set the END bit of ibsta when an
EOS match occurs during a read.

Default: non-zero.

IbcUnAddr 0x001B zero = Do not send Untalk (UNT)and Unlisten
(UNL)–at the end of device-level reads and writes.

non-zero = Send UNT and UNL at the end of
device-level reads and writes.

Default: zero.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-38 © National Instruments Corp.

IBDEV Device Level IBDEV

Purpose

Open and initialize a device descriptor.

DOS Format

C

int ibdev (int BdIndx, int pad, int sad, int tmo, int eot,
int eos)

QuickBASIC/BASIC

CALL ibdev (BdIndx%, pad%, sad%, tmo%, eot%, eos%, ud%)
or

ud% = ildev (BdIndx%, pad%, sad%, tmo%, eot%, eos%)

BASICA

CALL ibdev (BdIndx%, pad%, sad%, tmo%, eot%, eos%, ud%)

Windows Format

C

int ibdev (int BdIndx, int pad, int sad, int tmo, int eot,
int eos)

Visual Basic

CALL ibdev (BdIndx%, pad%, sad%, tmo%, eot%, eos%, ud%)
or

ud% = ildev (BdIndx%, pad%, sad%, tmo%, eot%, eos%)

Direct Entry with C

DLLibdev (int BdIndx, int pad, int sad, int tmo, int eot, int
eos, int _far *ibsta, int _far *iberr, long _far
*ibcntl)

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-39 NI-488.2 FRM for DOS/Windows

IBDEV Device Level IBDEV
(Continued)

Direct Entry with Visual Basic

Declare Function DLLibdev Lib "gpib.dll"
(ByVal BdIndx%, ByVal pad%, ByVal sad%, ByVal tmo%,
 ByVal eot%, ByVal eos%, ibsta%, iberr%, ibcntl&)
 As Integer

Input

 BdIndx Index of the access board for the device

 pad The primary GPIB address of the device

 sad The secondary GPIB address of the device

 tmo The I/O timeout value

 eot EOI mode of the device

 eos EOS character and modes

Output

Function Return The device descriptor

Description

ibdev acquires a device descriptor to use in subsequent device-level NI-488 functions.
It opens and initializes a device descriptor and configures it according to the input
parameters.

For more details on the meaning and effect of each input parameter, see the
corresponding NI-488 functions for ibbna, ibpad, ibsad, ibtmo, ibeot, and
ibeos.

If ibdev is unable to get a valid device descriptor, a -1 is returned; the ERR bit is set in
ibsta and iberr contains EDVR.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-40 © National Instruments Corp.

IBDEV Device Level IBDEV
(Continued)

ibdev acquires and initializes a device descriptor from the set of user-configurable
devices (for example, dev1, dev2, and so on through dev32). As a result, it is
necessary for an application to use ibdev only after all calls to ibfind for user-
configurable devices have been completed. This is the only way to ensure that ibdev
and ibfind do not both return the same device descriptor.

Possible Errors

EARG pad, sad, tmo, or eos is invalid. See the corresponding
NI-488 function.

EDVR Either no device descriptors are available or BdIndx refers to
a GPIB board that is not installed.

ENEB The interface board is not installed or is not properly
configured.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-41 NI-488.2 FRM for DOS/Windows

IBDMA Board Level IBDMA

Purpose

Enable or disable DMA.

DOS Format

C

int ibdma (int ud, int v)

QuickBASIC/BASIC

CALL ibdma (ud%, v%) or status% = ildma (ud%, v%)

BASICA

CALL ibdma (ud%, v%)

Windows Format

C

int ibdma (int ud, int v)

Visual Basic

CALL ibdma (ud%, v%) or status% = ildma (ud%, v%)

Direct Entry with C

DLLibdma (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibdma Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-42 © National Instruments Corp.

IBDMA Board Level IBDMA
(Continued)

Input

 ud A board descriptor

 v Enable or disable the use of DMA

Output

Function Return The value of ibsta

Description

ibdma enables or disables DMA transfers for the board described by ud. If v is zero
then DMA is not used for GPIB I/O transfers. If v is non-zero, then DMA is used for
GPIB I/O transfers.

Possible Errors

EARG ud is valid but does not refer to an interface board.

ECAP The interface board is not configured to use a DMA channel.
To configure a DMA channel, use ibconf in DOS or the
GPIB software configuration utility in Windows.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-43 NI-488.2 FRM for DOS/Windows

IBEOS Board Level IBEOS
Device Level

Purpose

Configure the end-of-string (EOS) termination mode or character.

DOS Format

C

int ibeos (int ud, int v)

QuickBASIC/BASIC

CALL ibeos (ud%, v%) or status% = ileos (ud%, v%)

BASICA

CALL ibeos (ud%, v%)

Windows Format

C

int ibeos (int ud, int v)

Visual Basic

CALL ibeos (ud%, v%) or status% = ileos (ud%, v%)

Direct Entry with C

DLLibeos (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibeos Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-44 © National Instruments Corp.

IBEOS Board Level IBEOS
Device Level (Continued)

Input

 ud A board or device descriptor

 v EOS mode and character information

Output

Function Return The value of ibsta

Description

ibeos configures the EOS termination mode or EOS character used by the board or
device described by ud. The parameter v describes the new end-of-string (EOS)
configuration to use. If v is zero, then the EOS configuration is disabled. Otherwise, the
low byte is the EOS character and the upper byte contains flags which define the EOS
mode. Table 1-7 describes the different EOS configurations and the corresponding
values of v. If no error occurs during the call, then the value of the previous EOS setting
is returned in iberr.

Table 1-7. EOS Configurations

Value of v

Bit Configuration High Byte Low Byte

A Terminate read when EOS is
detected.

00000100 EOS character

B Set EOI with EOS on write
function.

00001000 EOS character

C Compare all 8 bits of EOS
byte rather than low 7 bits (all
read and write functions).

00010000 EOS character

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-45 NI-488.2 FRM for DOS/Windows

IBEOS Board Level IBEOS
Device Level (Continued)

Configuration bits A and C determine how to terminate read I/O operations. If bit A is
set and bit C is clear, then a read ends when a byte that matches the low seven bits of the
EOS character is received. If bits A and C are both set, then a read ends when a byte that
matches all eight bits of the EOS character is received.

Configuration bits B and C determine when a write I/O operation asserts the GPIB EOI
line. If bit B is set and bit C is clear, then EOI is asserted when the written character
matches the low seven bits of the EOS character. If bits B and C are both set, then EOI is
asserted when the written character matches all eight bits of the EOS character.

Note: Defining an EOS byte does not cause the driver to automatically send that byte
at the end of write I/O operations. In your application the EOS byte must be
placed at the end of the data strings that it defines.

For more information on the termination of I/O operations refer to the NI-488.2 user
manual.

Examples

ibeos (ud, 0x140A); /* Configure the software to end reads on
newline character (hex 0A) for the unit
descriptor, ud */

ibeos (ud, 0x180A); /* Configure the software to assert the
GPIB EOI line whenever the newline
character (hex 0A)is written out by the
unit descriptor, ud */

Possible Errors

EARG The high byte of v contains invalid bits.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-46 © National Instruments Corp.

IBEOT Board Level IBEOT
Device Level

Purpose

Enable or disable the automatic assertion of the GPIB EOI line at the end of write I/O
operations.

DOS Format

C

int ibeot (int ud, int v)

QuickBASIC/BASIC

CALL ibeot (ud%, v%) or status% = ileot (ud%, v%)

BASICA

CALL ibeot (ud%, v%)

Windows Format

C

int ibeot (int ud, int v)

Visual Basic

CALL ibeot (ud%, v%) or status% = ileot (ud%, v%)

Direct Entry with C

DLLibeot (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibeot Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-47 NI-488.2 FRM for DOS/Windows

IBEOT Board Level IBEOT
Device Level (Continued)

Input

 ud A board or device descriptor

 v Enables or disables the end of transmission assertion of EOI

Output

Function Return The value of ibsta

Description

ibeot enables or disables the assertion of the EOI line at the end of write I/O
operations, such as ibwrt, for the board or device described by ud. If v is non-zero,
then EOI is asserted when the last byte of a GPIB write is sent. If v is zero, then nothing
occurs when the last byte is sent. If no error occurs during the call, then the previous
value of EOT is returned in iberr.

For more information on the termination of I/O operations refer to the NI-488.2 user
manual.

Possible Errors

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-48 © National Instruments Corp.

IBEVENT Board Level IBEVENT

Purpose

Return the oldest recorded event.

DOS Format

C

int ibevent (int ud, short *event)

QuickBASIC/BASIC

CALL ibevent (ud%, event%)

or

status% = ilevent (ud%, event%)

BASICA

CALL ibevent (ud%, event%)

Windows Format

C

int ibevent (int ud, short *event)

Visual Basic

CALL ibevent (ud%, event%)

or

status% = ilevent (ud%, event%)

Direct Entry with C

DLLibevent (int ud, short _far *event, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibevent Lib "gpib.dll"
(ByVal ud%, event%, ibsta%, iberr%, ibcntl&)As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-49 NI-488.2 FRM for DOS/Windows

IBEVENT Board Level IBEVENT
(Continued)

Input

 ud A board descriptor

Output

event The returned event

Function Return The value of ibsta

Description

ibevent determines which GPIB event (Device Clear, Device Trigger, or Interface
Clear) occurred. Usually, you call ibevent when the EVENT bit is set in ibsta. The
variable event can be one of the following values:

0 = No events are in the queue

1 = A Device Trigger message was received

2 = A Device Clear message was received

3 = Interface Clear was received

Note: The GPIB board must not be configured as System Controller to detect
interface clear. Use ibconfig, option IbcSC to disable System Controller
capability.

When this function returns, ibcntl contains the number of events that remain in the
event queue. To enable the event queue, use the ibconfig function, option
IbcEventQueue.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-50 © National Instruments Corp.

IBEVENT Board Level IBEVENT
(Continued)

Possible Errors

EARG ud is a valid descriptor but does not refer to a board.

ECAP The interface board is not configured to use the event queue
(See ibconfig, option IbcEventQueue).

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ETAB The event queue has overflowed and events have been
discarded.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-51 NI-488.2 FRM for DOS/Windows

IBFIND Board Level IBFIND
Device Level

Purpose

Open and initialize a GPIB board or a user-configured device.

DOS Format

C

int ibfind (char *udname)

QuickBASIC/BASIC

CALL ibfind (udname$, ud%) or ud% = ilfind (udname$)

BASICA

CALL ibfind (udname$, ud%)

Windows Format

C

int ibfind (char *udname)

Visual Basic

CALL ibfind (udname$, ud%) or ud% = ilfind (udname$)

Direct Entry with C

DLLibfind (char _far *udname, int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibfind Lib "gpib.dll"
(ByVal udname$, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-52 © National Instruments Corp.

IBFIND Board Level IBFIND
Device Level (Continued)

Input

 udname A user-configured device or board name

Output

Function Return The board or device descriptor

Description

ibfind is used to acquire a descriptor for a board or user-configured device; this board
or device descriptor can be used in subsequent NI-488 functions.

ibfind performs the equivalent of an ibonl 1 to initialize the board or device
descriptor. The unit descriptor returned by ibfind remains valid until the board or
device is put offline using ibonl 0.

If ibfind is unable to get a valid descriptor, a -1 is returned; the ERR bit is set in
ibsta and iberr contains EDVR.

Note: Using ibfind to obtain device descriptors is useful only for compatibility
with existing applications. New applications should use ibdev instead of
ibfind. ibdev is more flexible, easier to use, and frees the application
from unnecessary device name requirements.

Possible Errors

EBUS Device level: There are no devices connected to the GPIB.

ECIC Device level: The access board is not CIC. See the Device-
Level Calls and Bus Management section in the NI-488.2 user
manual.

EDVR Either udname is not recognized as a board or device name or
the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-53 NI-488.2 FRM for DOS/Windows

IBGTS Board Level IBGTS

Purpose

Go from Active Controller to Standby.

DOS Format

C

int ibgts (int ud, int v)

QuickBASIC/BASIC

CALL ibgts (ud%, v%) or status% = ilgts (ud%, v%)

BASICA

CALL ibgts (ud%, v%)

Windows Format

C

int ibgts (int ud, int v)

Visual Basic

CALL ibgts (ud%, v%) or status% = ilgts (ud%, v%)

Direct Entry with C

DLLibgts (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibgts Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&)As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-54 © National Instruments Corp.

IBGTS Board Level IBGTS
(Continued)

Input

 ud Board descriptor

 v Determines whether to perform acceptor handshaking

Output

Function Return The value of ibsta

Description

ibgts causes the board ud to go to Standby Controller and the GPIB ATN line to be
unasserted. If v is non-zero, acceptor handshaking or shadow handshaking is performed
until END occurs or until ATN is reasserted by a subsequent ibcac call. With this
option, the GPIB board can participate in data handshake as an acceptor without actually
reading data. If END is detected, the interface board enters a Not Ready For Data
(NRFD) handshake holdoff state which results in hold off of subsequent GPIB transfers.
If v is 0, no acceptor handshaking or holdoff is performed.

Before performing an ibgts with shadow handshake, call the ibeos function to
establish proper EOS modes.

For more information about handshaking, refer to the ANSI/IEEE Standard 488.1-1987.

Possible Errors

EADR v is non-zero, and either ATN is low or the interface board is a
Talker or a Listener.

EARG ud is valid but does not refer to an interface board.

ECIC The interface board is not Controller-In-Charge.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-55 NI-488.2 FRM for DOS/Windows

IBIST Board Level IBIST

Purpose

Set or clear the board individual status bit for parallel polls.

DOS Format

C

int ibist (int ud, int v)

QuickBASIC/BASIC

CALL ibist (ud%, v%) or status% = ilist (ud%, v%)

BASICA

CALL ibist (ud%, v%)

Windows Format

C

int ibist (int ud, int v)

Visual Basic

CALL ibist (ud%, v%) or status% = ilist (ud%, v%)

Direct Entry with C

DLLibist (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibist Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-56 © National Instruments Corp.

IBIST Board Level IBIST
(Continued)

Input

 ud Board descriptor

 v Indicates whether to set or clear the ist bit

Output

Function Return The value of ibsta

Description

ibist sets the interface board ist (individual status) bit according to v. If v is zero,
the ist bit is cleared; if v is non-zero, ist bit is set. The previous value of the ist bit
is returned in iberr.

For more information on parallel polling, refer to the NI-488.2 user manual.

Possible Errors

EARG ud is valid but does not refer to an interface board.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-57 NI-488.2 FRM for DOS/Windows

IBLINES Board Level IBLINES

Purpose

Return the status of the eight GPIB control lines.

DOS Format

C

int iblines (int ud, short *clines)

QuickBASIC/BASIC

CALL iblines (ud%, clines%)
or

status% = illines (ud%, clines%)

BASICA

CALL iblines (ud%, clines%)

Windows Format

C

int iblines (int ud, short *clines)

Visual Basic

CALL iblines (ud%, clines%)
or

status% = illines (ud%, clines%)

Direct Entry with C

DLLiblines (int ud, short _far *clines, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLiblines Lib "gpib.dll"
(ByVal ud%, clines%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-58 © National Instruments Corp.

IBLINES Board Level IBLINES
(Continued)

Input

 ud Board descriptor

Output

 clines Returns GPIB control line state information

Function Return The value of ibsta

Description

iblines returns the state of the GPIB control lines in clines. The low-order byte
(bits 0 through 7) of clines contains a mask indicating the capability of the GPIB
interface board to sense the status of each GPIB control line. The upper byte (bits 8
through 15) contains the GPIB control line state information. The following is a pattern
of each byte.

7 6 5 4 3 2 1 0

EOI ATN SRQ REN IFC NRFD NDAC DAV

To determine if a GPIB control line is asserted, first check the appropriate bit in the lower
byte to determine if the line can be monitored. If the line can be monitored (indicated by
a 1 in the appropriate bit position), then check the corresponding bit in the upper byte. If
the bit is set (1), the corresponding control line is asserted. If the bit is clear (0), the
control line is unasserted.

Example

short lines;
iblines (ud, &lines);
if (lines & ValidREN) { /* check to see if REN is asserted */

if (lines & BusREN) {
printf ("REN is asserted");

}
}

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-59 NI-488.2 FRM for DOS/Windows

IBLINES Board Level IBLINES
(Continued)

Possible Errors

EARG ud is valid but does not refer to an interface board.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-60 © National Instruments Corp.

IBLN Board Level IBLN
Device Level

Purpose

Check for the presence of a device on the bus.

DOS Format

C

int ibln (int ud, int pad, int sad, short *listen)

QuickBASIC/BASIC

CALL ibln (ud%, pad%, sad%, listen%)
or

status% = illn (ud%, pad%, sad%, listen%)

BASICA

CALL ibln (ud%, pad%, sad%, listen%)

Windows Format

C

int ibln (int ud, int pad, int sad, short *listen)

Visual Basic

CALL ibln (ud%, pad%, sad%, listen%)
or

status% = illn (ud%, pad%, sad%, listen%)

Direct Entry with C

DLLibln (int ud, int pad, int sad, short _far *listen,
int _far *ibsta, int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibln Lib "gpib.dll"
(ByVal ud%, ByVal pad%, ByVal sad%, listen%, ibsta%,
 iberr%, ibcntl&) As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-61 NI-488.2 FRM for DOS/Windows

IBLN Board Level IBLN
Device Level (Continued)

Input

 ud Board or device descriptor

 pad The primary GPIB address of the device

 sad The secondary GPIB address of the device

Output

 listen Indicates whether or not a device is present

Function Return The value of ibsta

Description

ibln determines whether there is a listening device at the GPIB address designated by
the pad and sad parameters. If ud is a board descriptor, then the bus associated with
that board is tested for Listeners. If ud is a device descriptor, then ibln uses the access
board associated with that device to test for Listeners. If a Listener is detected, a non-
zero value is returned in listen. If no Listener is found, zero is returned.

The pad parameter can be any valid primary address (a value between 0 and 30). The
sad parameter can be any valid secondary address (a value between 96 to 126), or one of
the constants NO_SAD or ALL_SAD. The constant NO_SAD designates that no secondary
address is to be tested (only a primary address is tested). The constant ALL_SAD
designates that all secondary addresses are to be tested.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-62 © National Instruments Corp.

IBLN Board Level IBLN
Device Level (Continued)

Possible Errors

EARG Either the pad or sad argument is invalid.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-63 NI-488.2 FRM for DOS/Windows

IBLOC Board Level IBLOC
Device Level

Purpose

Go to Local.

DOS Format

C

int ibloc (int ud)

QuickBASIC/BASIC

CALL ibloc (ud%)
or

status% = illoc (ud%)

BASICA

CALL ibloc (ud%)

Windows Format

C

int ibloc (int ud)

Visual Basic

CALL ibloc (ud%)
or

status% = illoc (ud%)

Direct Entry with C

DLLibloc (int ud, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibloc Lib "gpib.dll"
(ByVal ud%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-64 © National Instruments Corp.

IBLOC Board Level IBLOC
Device Level (Continued)

Input

 ud Board or device descriptor

Output

Function Return The value of ibsta

Description

Board Level

If the board is not in a lockout state (LOK does not appear in the status word, ibsta),
ibloc places the board in local mode. Otherwise, the call has no effect.

The ibloc function is used to simulate a front panel RTL (Return to Local) switch if the
computer is used as an instrument.

Device Level

Unless the REN (Remote Enable) line has been unasserted with the ibsre function, all
device-level functions automatically place the specified device in remote program mode.
ibloc is used to move devices temporarily from a remote program mode to a local
mode until the next device function is executed on that device.

Possible Errors

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-65 NI-488.2 FRM for DOS/Windows

IBONL Board Level IBONL
Device Level

Purpose

Place the device or interface board online or offline.

DOS Format

C

int ibonl (int ud, int v)

QuickBASIC/BASIC

CALL ibonl (ud%, v%) or status% = ilonl (ud%, v%)

BASICA

CALL ibonl (ud%, v%)

Windows Format

C

int ibonl (int ud, int v)

Visual Basic

CALL ibonl (ud%, v%) or status% = ilonl (ud%, v%)

Direct Entry with C

DLLibonl (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibonl Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&)As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-66 © National Instruments Corp.

IBONL Board Level IBONL
Device Level (Continued)

Input

 ud Board or device descriptor

 v Indicates whether the board or device is to be put online or
taken offline

Output

Function Return The value of ibsta

Description

ibonl resets the board or device and places all its software configuration parameters in
their pre-configured state. In addition, if v is zero, the device or interface board is taken
offline. If v is non-zero, the device or interface board is left operational, or online.

If a device or an interface board is taken offline, the board or device descriptor (ud) is no
longer valid. You must execute an ibfind or ibdev to access the board or device
again.

Possible Errors

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-67 NI-488.2 FRM for DOS/Windows

IBPAD Board Level IBPAD
Device Level

Purpose

Change the primary address.

DOS Format

C

int ibpad (int ud, int v)

QuickBASIC/BASIC

CALL ibpad (ud%, v%) or status% = ilpad (ud%, v%)

BASICA

CALL ibpad (ud%, v%)

Windows Format

C

int ibpad (int ud, int v)

Visual Basic

CALL ibpad (ud%, v%) or status% = ilpad (ud%, v%)

Direct Entry with C

DLLibpad (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibpad Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&)As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-68 © National Instruments Corp.

IBPAD Board Level IBPAD
Device Level (Continued)

Input

 ud Board or device descriptor

 v GPIB primary address

Output

Function Return The value of ibsta

Description

ibpad sets the primary GPIB address of the board or device to v, an integer ranging
from 0 to 30. If no error occurs during the call, then iberr contains the previous GPIB
primary address.

Possible Errors

EARG v is not a valid primary GPIB address; it must be in the range
0 to 30.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-69 NI-488.2 FRM for DOS/Windows

IBPCT Device Level IBPCT

Purpose

Pass control to another GPIB device with Controller capability.

DOS Format

C

int ibpct (int ud)

QuickBASIC/BASIC

CALL ibpct (ud%) or status% = ilpct (ud%)

BASICA

CALL ibpct (ud%)

Windows Format

C

int ibpct (int ud)

Visual Basic

CALL ibpct (ud%) or status% = ilpct (ud%)

Direct Entry with C

DLLibpct (int ud, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibpct Lib "gpib.dll"
(ByVal ud%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-70 © National Instruments Corp.

IBPCT Device Level IBPCT
(Continued)

Input

 ud Device descriptor

Output

Function Return The value of ibsta

Description

ibpct passes Controller-in-Charge status to the device indicated by ud. The access
board automatically unasserts the ATN line and goes to Controller Idle State. This
function assumes that the device has Controller capability.

Possible Errors

EARG ud is valid but does not refer to a device.

EBUS No devices are connected to the GPIB.

ECIC The access board is not CIC. See the Device-Level Calls and
Bus Management section in the NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-71 NI-488.2 FRM for DOS/Windows

IBPPC Board Level IBPPC
Device Level

Purpose

Parallel poll configure.

DOS Format

C

int ibppc (int ud, int v)

QuickBASIC/BASIC

CALL ibppc (ud%, v%) or status% = ilppc (ud%, v%)

BASICA

CALL ibppc (ud%, v%)

Windows Format

C

int ibppc (int ud, int v)

Visual Basic

CALL ibppc (ud%, v%) or status% = ilppc (ud%, v%)

Direct Entry with C

DLLibppc (int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibppc Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&)As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-72 © National Instruments Corp.

IBPPC Board Level IBPPC
Device Level (Continued)

Input

 ud Board or device descriptor

 v Parallel poll enable/disable value

Output

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibppc enables or disables the device from responding to
parallel polls. The device is addressed and sent the appropriate parallel poll message–
Parallel Poll Enable (PPE) or Disable (PPD). Valid parallel poll messages are 96 to 126
(hex 60 to hex 7E) or zero to send PPD.

Board Level

If ud is a board descriptor, ibppc performs a local parallel poll configuration using the
parallel poll configuration value v. Valid parallel poll messages are 96 to 126 (hex 60 to
hex 7E) or zero to send PPD. If no error occurs during the call, then iberr contains the
previous value of the local parallel poll configuration.

For more information on parallel polling, refer to the NI-488.2 user manual.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-73 NI-488.2 FRM for DOS/Windows

IBPPC Board Level IBPPC
Device Level (Continued)

Possible Errors

EARG v does not contain a valid PPE or PPD message.

EBUS Device level: No devices are connected to the GPIB.

ECAP Board level: The board is not configured to perform local
parallel poll configuration (see ibconfig, option IbcPP2).

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-74 © National Instruments Corp.

IBRD Board Level IBRD
Device Level

Purpose

Read data from a device into a user buffer.

DOS Format

C

int ibrd (int ud, void *rdbuf, long cnt)

QuickBASIC/BASIC

CALL ibrd (ud%, rdbuf$)
or

status% = ilrd (ud%, rdbuf$, cnt&)

BASICA

CALL ibrd (ud%, rdbuf$)

Windows Format

C

int ibrd (int ud, void *rdbuf, long cnt)

Visual Basic

CALL ibrd (ud%, rdbuf$)
or

status% = ilrd (ud%, rdbuf$, cnt&)

Direct Entry with C

DLLibrd (int ud, void _far *rdbuf, long cnt, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibrd Lib "gpib.dll"
(ByVal ud%, ByVal rdbuf$, ByVal cnt&, ibsta%, iberr%,
ibcntl&) As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-75 NI-488.2 FRM for DOS/Windows

IBRD Board Level IBRD
Device Level (Continued)

Input

 ud Board or device descriptor

 cnt Number of bytes to be read from the GPIB

Output

rdbuf Address of buffer into which data is read

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibrd addresses the GPIB, reads up to cnt bytes of data,
and places the data into the buffer specified by rdbuf. The operation terminates
normally when cnt bytes have been received or END is received. The operation
terminates with an error if the transfer could not complete within the timeout period. The
actual number of bytes transferred is returned in the global variable ibcntl.

Board Level

If ud is a board descriptor, ibrd reads up to cnt bytes of data from a GPIB device and
places it into the buffer specified by rdbuf. A board-level ibrd assumes that the GPIB
is already properly addressed. The operation terminates normally when cnt bytes have
been received or END is received. The operation terminates with an error if the transfer
could not complete within the timeout period or, if the board is not the CIC, the CIC
sends a Device Clear message on the GPIB. The actual number of bytes transferred is
returned in the global variable ibcntl.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-76 © National Instruments Corp.

IBRD Board Level IBRD
Device Level (Continued)

Possible Errors

EABO Either cnt bytes or END was not received within the timeout
period or a Device Clear message was received after the read
operation began.

EADR Board level: The GPIB is not correctly addressed. Use
ibcmd to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-77 NI-488.2 FRM for DOS/Windows

IBRDA Board Level IBRDA
Device Level

Purpose

Read data asynchronously from a device into a user buffer.

DOS Format

C

int ibrda (int ud, void *rdbuf, long cnt)

QuickBASIC/BASIC

CALL ibrda (ud%, rdbuf$)
or

status% = ilrda (ud%, rdbuf$, cnt&)

BASICA

CALL ibrda (ud%, rdbuf$)

Windows Format

C

int ibrda (int ud, void *rdbuf, long cnt)

Visual Basic

CALL ibrda (ud%, rdbuf$)
or

status% = ilrda (ud%, rdbuf$, cnt&)

Direct Entry with C

DLLibrda(int ud, void _far *rdbuf, long cnt, int _far *ibsta,
 short _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibrda Lib "gpib.dll"
(ByVal ud%, ByVal rdbuf$, ByVal cnt&, ibsta%, iberr%,
 ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-78 © National Instruments Corp.

IBRDA Board Level IBRDA
Device Level (Continued)

Input

 ud Board or device descriptor

 cnt Number of bytes to be read from the GPIB

Output

rdbuf Address of buffer into which data is read

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibrda addresses the GPIB, begins an asynchronous read of
up to cnt bytes of data from a GPIB device, and places the data into the memory
location specified by rdbuf. The operation terminates normally when cnt bytes have
been received or END is received. The actual number of bytes transferred is returned in
the global variable ibcntl.

Board Level

If ud is a board descriptor, ibrda reads up to cnt bytes of data from a GPIB device and
places the data into the buffer specified by rdbuf. A board-level ibrda assumes that
the GPIB is already properly addressed. The operation terminates normally when cnt
bytes have been received or END is received. The operation terminates with an error if
the board is not the CIC or if the CIC sends the Device Clear message on the GPIB. The
actual number of bytes transferred is returned in the global variable ibcntl.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-79 NI-488.2 FRM for DOS/Windows

IBRDA Board Level IBRDA
Device Level (Continued)

Board and Device Level

The asynchronous I/O calls (ibcmda, ibrda, ibwrta) are designed so that
applications can perform other non-GPIB operations while the I/O is in progress. Once
the asynchronous I/O has begun, further GPIB calls are strictly limited. Any calls that
would interfere with the I/O in progress are not allowed; the driver returns EOIP in this
case.

Once the I/O is complete, the application must resynchronize with the NI-488.2 driver.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta mask has the CMPL bit set, then the driver and
application are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

Possible Errors

EABO Board level: a Device Clear message was received from the
CIC.

EADR Board level: The GPIB is not correctly addressed. Use ibcmd
to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-80 © National Instruments Corp.

IBRDF Board Level IBRDF
Device Level

Purpose

Read data from a device into a file.

DOS Format

C

int ibrdf (int ud, char *flname)

QuickBASIC/BASIC

CALL ibrdf (ud%, flname$)
or

status% = ilrdf (ud%, flname$)

BASICA

CALL ibrdf (ud%, flname$)

Windows Format

C

int ibrdf (int ud, char *flname)

Visual Basic

CALL ibrdf (ud%, flname$)
or

status% = ilrdf (ud%, flname$)

Direct Entry with C

DLLibrdf (int ud, char _far *flname,short _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibrdf Lib "gpib.dll"
(ByVal ud%, ByVal flname$, ibsta%, iberr%, ibcntl&)
 As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-81 NI-488.2 FRM for DOS/Windows

IBRDF Board Level IBRDF
Device Level (Continued)

Input

 ud Board or device descriptor

 flname Name of file into which data is read

Output

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibrdf addresses the GPIB, reads data from a GPIB device,
and places the data into the file specified by flname. The operation terminates
normally when END is received. The operation terminates with an error if the transfer
could not complete within the timeout period. The actual number of bytes transferred is
returned in the global variable ibcntl.

Board Level

If ud is a board descriptor, ibrdf reads data from a GPIB device and places the data
into the file specified by flname. A board-level ibrdf assumes that the GPIB is
already properly addressed. The operation terminates normally when END is received.
The operation terminates with an error if the transfer could not complete within the
timeout period or, if the board is not the CIC, the CIC sends a Device Clear message on
the GPIB. The actual number of bytes transferred is returned in the global variable
ibcntl.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-82 © National Instruments Corp.

IBRDF Board Level IBRDF
Device Level (Continued)

Possible Errors

EABO Either cnt bytes or END was not received within the timeout
period, or ud is a board descriptor and Device Clear was
received after the read operation began.

EADR Board level: The GPIB is not correctly addressed. Use
ibcmd to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

EFSO ibrdf could not access flname.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-83 NI-488.2 FRM for DOS/Windows

IBRDI Board Level IBRDI
Device Level

Purpose

Read data from a device into a user integer buffer.

DOS Format

C

Not supported–use ibrd

QuickBASIC/BASIC

CALL ibrdi (ud%, rdbuf%(), cnt&)
or

status% = ilrdi (ud%, rdbuf%(), cnt&)

BASICA

CALL ibrdi (ud%, rdbuf%(0), cnt%)

Windows Format

C

Not supported–use ibrd

Visual Basic

CALL ibrdi (ud%, rdbuf%(), cnt&)
or

status% = ilrdi (ud%, rdbuf%(), cnt&)

Direct Entry with C

Not supported–use ibrd

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-84 © National Instruments Corp.

IBRDI Board Level IBRDI
Device Level (Continued)

Direct Entry with Visual Basic

Declare Function DLLibrd Lib "gpib.dll"
(ByVal ud%, rdbuf%, ByVal cnt&, ibsta%, iberr%, ibcntl&)
 As Integer

Note: For direct entry with Visual Basic, the correct format is DLLibrd, not
DLLibrdi.

Input

 ud Board or device descriptor

 cnt Number of bytes to be read from the GPIB

Output

rdbuf Address of buffer into which integer data is read. You can
replace rdbuf% with rdbuf& to read long integer data.

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibrdi addresses the GPIB, begins a read of up to cnt bytes
of data from a GPIB device, and places the data into the memory location specified by
rdbuf. The operation terminates normally when cnt bytes have been received or END
is received. The operation terminates with an error if the transfer could not complete
within the timeout period. The actual number of bytes transferred is returned in the
global variable ibcntl.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-85 NI-488.2 FRM for DOS/Windows

IBRDI Board Level IBRDI
Device Level (Continued)

Board Level

If ud is a board descriptor, ibrdi reads up to cnt bytes of data from a GPIB device and
places the data into the buffer specified by rdbuf. A board-level ibrdi assumes that
the GPIB is already properly addressed. The operation terminates normally when cnt
bytes have been received or END is received. The operation terminates with an error if
the transfer could not complete within the timeout period or, if the board is not the CIC,
when the CIC sends a Device Clear message on the GPIB. The actual number of bytes
transferred is returned in the global variable ibcntl.

Note: The cnt parameter specifies the number of bytes to transfer. For example, if
you want to transfer 16 integers, the number of bytes is 16*2=32.

Possible Errors

EABO Neither cnt bytes nor End was received within the timeout
period or a Device Clear message was received after the read
operation began.

EADR Board level: The GPIB is not correctly addressed. Use ibcmd
to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-86 © National Instruments Corp.

IBRDIA Board Level IBRDIA
Device Level

Purpose

Read integer data asynchronously from a device into a user buffer.

DOS Format

C

Not supported–use ibrda

QuickBASIC/BASIC

CALL ibrdia (ud%, rdbuf%(), cnt&)
or

status% = ilrdia (ud%, rdbuf%(), cnt&)

BASICA

CALL ibrdia (ud%, rdbuf%(0), cnt%)

Windows Format

C

Not supported–use ibrda

Visual Basic

CALL ibrdia (ud%, rdbuf%(), cnt&)
or

status% = ilrdia (ud%, rdbuf%(), cnt&)

Direct Entry with C

Not supported–use ibrda

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-87 NI-488.2 FRM for DOS/Windows

IBRDIA Board Level IBRDIA
Device Level (Continued)

Direct Entry with Visual Basic

Declare Function DLLibrda Lib "gpib.dll"
(ByVal ud%, rdbuf%, ByVal cnt&, ibsta%, iberr%, ibcntl&)
 As Integer

Note: For direct entry with Visual Basic, the correct format is DLLibrd, not
DLLibrdia.

Input

 ud Board or device descriptor

 cnt Number of bytes to be read from the GPIB

Output

rdbuf Address of buffer into which integer data is read. You can
replace rdbuf% with rdbuf& to read long integer data.

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibrdia addresses the GPIB, begins an asynchronous read
of up to cnt bytes of data from a GPIB device, and places the data into the memory
location specified by rdbuf. The operation terminates normally when cnt bytes have
been received or END is received. The operation terminates with an error if the transfer
could not complete within the timeout period. The actual number of bytes transferred is
returned in the global variable ibcntl.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-88 © National Instruments Corp.

IBRDIA Board Level IBRDIA
Device Level (Continued)

Board Level

If ud is a board descriptor, ibrdia reads up to cnt bytes of data from a GPIB device
and places the data into the buffer specified by rdbuf. A board-level ibrdia assumes
that the GPIB is already properly addressed. The operation terminates normally when
cnt bytes have been received or END is received. The operation terminates with an
error if the transfer could not complete within the timeout period or, if the board is not the
CIC, the CIC sends a Device Clear message on the GPIB. The actual number of bytes
transferred is returned in the global variable ibcntl.

Board and Device Level

The asynchronous I/O calls (ibcmda, ibrda, ibwrta) are designed so that
applications can perform other non-GPIB operations while the I/O is in progress. Once
the asynchronous I/O has begun, further GPIB calls are strictly limited. Any calls that
would interfere with the I/O in progress are not allowed; the driver returns EOIP in this
case.

Once the I/O is complete, the application must resynchronize with the NI-488.2 driver.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta mask has the CMPL bit set, then the driver and
application are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

Note: The cnt parameter specifies the number of bytes to transfer. For example, if
you want to transfer 16 integers, the number of bytes is 16*2=32.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-89 NI-488.2 FRM for DOS/Windows

IBRDIA Board Level IBRDIA
Device Level (Continued)

Possible Errors

EABO Board level: a Device Clear message was received from the
CIC.

EADR Board level: The GPIB is not correctly addressed. Use ibcmd
to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-90 © National Instruments Corp.

IBRPP Board Level IBRPP
Device Level

Purpose

Conduct a parallel poll.

DOS Format

C

int ibrpp (int ud, char *ppr)

QuickBASIC/BASIC

CALL ibrpp (ud%, ppr%) or status% = ilrpp (ud%, ppr%)

BASICA

CALL ibrpp (ud%, ppr%)

Windows Format

C

int ibrpp (int ud, char *ppr)

Visual Basic

CALL ibrpp (ud%, ppr%) or status% = ilrpp (ud%, ppr%)

Direct Entry with C

DLLibrpp (int ud, char _far *ppr,int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibrpp Lib "gpib.dll"
(ByVal ud%, ppr%, ibsta%, iberr%, ibcntl&) As Integer

Input

 ud Board or device descriptor

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-91 NI-488.2 FRM for DOS/Windows

IBRPP Board Level IBRPP
Device Level (Continued)

Output

 ppr Parallel poll response byte

Function Return The value of ibsta

Description

ibrpp parallel polls all the devices on the GPIB. The result of this poll is returned in
ppr.

For more information on parallel polling, refer to the NI-488.2 user manual.

Possible Errors

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-92 © National Instruments Corp.

IBRSC Board Level IBRSC

Purpose

Request or release system control.

DOS Format

C

int ibrsc (int ud, int v)

QuickBASIC/BASIC

CALL ibrsc (ud%, v%) or status% = ilrsc (ud%, v%)

BASICA

CALL ibrsc (ud%, v%)

Windows Format

C

int ibrsc (int ud, int v)

Visual Basic

CALL ibrsc (ud%, v%) or status% = ilrsc (ud%, v%)

Direct Entry with C

DLLibrsc(int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibrsc Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As
Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-93 NI-488.2 FRM for DOS/Windows

IBRSC Board Level IBRSC
(Continued)

Input

 ud Board descriptor

 v Determines if system control is to be requested or released

Output

Function Return The value of ibsta

Description

ibrsc requests or releases the capability to send Interface Clear (IFC) and Remote
Enable (REN) messages to devices. If v is zero, the board releases system control and
functions requiring System Controller capability are not allowed. If v is non-zero,
functions requiring System Controller capability are subsequently allowed. If no error
occurs during the call, then iberr contains the previous System Controller state of the
board.

Possible Errors

EARG ud is a valid descriptor but does not refer to a board.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-94 © National Instruments Corp.

IBRSP Device Level IBRSP

Purpose

Conduct a serial poll.

DOS Format

C

int ibrsp (int ud, char *spr)

QuickBASIC/BASIC

CALL ibrsp (ud%, spr%) or status% = ilrsp (ud%, spr%)

BASICA

CALL ibrsp (ud%, spr%)

Windows Format

C

int ibrsp (int ud, char *spr)

Visual Basic

CALL ibrsp (ud%, spr%) or status% = ilrsp (ud%, spr%)

Direct Entry with C

DLLibrsp (int ud, char _far *spr, int _far *ibsta,
int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibrsp Lib "gpib.dll"
(ByVal ud%, spr%, ibsta%, iberr%, ibcntl&) As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-95 NI-488.2 FRM for DOS/Windows

IBRSP Device Level IBRSP
(Continued)

Input

 ud Device descriptor

Output

 spr Serial poll response byte

Function Return The value of ibsta

Description

The ibrsp function is used to serial poll the device ud. The serial poll response byte is
returned in spr. If bit 6 (hex 40) of the response byte is set, the device is requesting
service. If the automatic serial polling feature is enabled, the device might have already
been polled. In this case, ibrsp returns the previously acquired status byte.

For more information on serial polling, refer to the NI-488.2 user manual.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-96 © National Instruments Corp.

IBRSP Device Level IBRSP
(Continued)

Possible Errors

EABO The serial poll response could not be read within the serial poll
timeout period.

EARG ud is a valid descriptor but does not refer to a device.

EBUS No devices are connected to the GPIB.

ECIC The access board is not CIC. See the Device-Level Calls and
Bus Management section in the NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESTB Autopolling is enabled and the serial poll queue has
overflowed. Disable automatic serial polling or call ibrsp
more often to keep the queue from overflowing.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-97 NI-488.2 FRM for DOS/Windows

IBRSV Board Level IBRSV

Purpose

Request service and change the serial poll status byte.

DOS Format

C

int ibrsv (int ud, int v)

QuickBASIC/BASIC

CALL ibrsv (ud%, v%) or status% = ilrsv (ud%, v%)

BASICA

CALL ibrsv (ud%, v%)

Windows Format

C

int ibrsv (int ud, int v)

Visual Basic

CALL ibrsv (ud%, v%) or status% = ilrsv (ud%, v%)

Direct Entry with C

DLLibrsv(int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibrsv Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-98 © National Instruments Corp.

IBRSV Board Level IBRSV
(Continued)

Input

 ud Board descriptor

 v Serial poll status byte

Output

Function Return The value of ibsta

Description

ibrsv requests service from the Controller and provides the Controller with an
application-dependent status byte when the Controller serial polls the GPIB board.

The value v is the status byte that the GPIB board returns when serial polled by the
Controller-In-Charge. If bit 6 (hex 40) is set in v, the GPIB board requests service from
the Controller by asserting the GPIB SRQ line. When ibrsv is called and an error does
not occur, the previous status byte is returned in iberr.

Possible Errors

EARG ud is a valid descriptor but does not refer to a board.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-99 NI-488.2 FRM for DOS/Windows

IBSAD Board Level IBSAD
Device Level

Purpose

Change or disable the secondary address.

DOS Format

C

int ibsad (int ud, int v)

QuickBASIC/BASIC

CALL ibsad (ud%, v%) or status% = ilsad (ud%, v%)

BASICA

CALL ibsad (ud%, v%)

Windows Format

C

int ibsad (int ud, int v)

Visual Basic

CALL ibsad (ud%, v%) or status% = ilsad (ud%, v%)

Direct Entry with C

DLLibsad(int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibsad Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&)
 As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-100 © National Instruments Corp.

IBSAD Board Level IBSAD
Device Level (Continued)

Input

 ud Board or device descriptor

 v GPIB secondary address

Output

Function Return The value of ibsta

Description

ibsad changes the secondary GPIB address of the board or device to v, an integer in the
range 96 to 126 (hex 60 to hex 7E) or zero. If v is zero, secondary addressing is disabled.
If no error occurs during the call, then the previous secondary address is returned in
iberr.

Possible Errors

EARG v is non-zero and outside the legal range 96 to 126.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-101 NI-488.2 FRM for DOS/Windows

IBSIC Board Level IBSIC

Purpose

Assert interface clear.

DOS Format

C

int ibsic (int ud)

QuickBASIC/BASIC

CALL ibsic (ud%) or status% = ilsic (ud%)

BASICA

CALL ibsic (ud%)

Windows Format

C

int ibsic (int ud)

Visual Basic

CALL ibsic (ud%) or status% = ilsic (ud%)

Direct Entry with C

DLLibsic (int ud, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibsic Lib "gpib.dll"
(ByVal ud%, ibsta%, iberr%, ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-102 © National Instruments Corp.

IBSIC Board Level IBSIC
(Continued)

Input

 ud Board descriptor

Output

Function Return The value of ibsta

Description

ibsic asserts the GPIB interface clear (IFC) line for at least 100 µs if the GPIB board is
System Controller. This initializes the GPIB and makes the interface board CIC and
Active Controller with ATN asserted.

The IFC signal resets only the GPIB interface functions of bus devices and not the
internal device functions. Consult your device documentation to determine how to reset
the internal functions of your device.

Possible Errors

EARG ud is a valid descriptor but does not refer to a board.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESAC Board does not have System Controller capability.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-103 NI-488.2 FRM for DOS/Windows

IBSRE Board Level IBSRE

Purpose

Set or clear the Remote Enable line.

DOS Format

C

int ibsre (int ud, int v)

QuickBASIC/BASIC

CALL ibsre (ud%, v%) or status% = ilsre (ud%, v%)

BASICA

CALL ibsre (ud%, v%)

Windows Format

C

int ibsre (int ud, int v)

Visual Basic

CALL ibsre (ud%, v%) or status% = ilsre (ud%, v%)

Direct Entry with C

DLLibsre(int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibsre Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As
Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-104 © National Instruments Corp.

IBSRE Board Level IBSRE
(Continued)

Input

 ud Board descriptor

 v Indicates whether to set or clear the REN line

Output

Function Return The value of ibsta

Description

If v is non-zero, the GPIB Remote Enable (REN) line is asserted. If v is zero, REN is
unasserted. The previous value of REN is returned in iberr.

REN is used by devices to choose between local and remote modes of operation. A
device should not actually enter remote mode until it receives its listen address.

Possible Errors

EARG ud is a valid descriptor but does not refer to a board.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESAC Board does not have System Controller capability.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-105 NI-488.2 FRM for DOS/Windows

IBSRQ Board Level IBSRQ

Purpose

Request an SRQ interrupt routine.

DOS Format

C

void ibsrq (void (_far *funcname) (void));

QuickBASIC/BASIC

Not supported–see Chapter 7, GPIB Programming Techniques, in the NI-488.2 User
Manual for DOS for information about ON SRQ capability.

BASICA

Not supported–see Chapter 7, GPIB Programming Techniques, in the NI-488.2 User
Manual for DOS for information about ON SRQ capability.

Windows Format

Not supported

Input

 funcname C interrupt-handling routine

Description

ibsrq establishes a call to the C routine funcname whenever the SRQI bit is set in the
status word (ibsta). If SRQI is set, the language interface calls funcname before
returning to the application program. If ibsrq is called with funcname equal to
NULL, SRQ servicing is turned off.

Note: You must disable automatic serial polling with ibconfig (option
IbcAUTOPOLL) before using this function. Also, device-level calls should
not be used when ibsrq is in effect. Device-level calls mask the SRQI bit,
preventing funcname from being called.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-106 © National Instruments Corp.

IBSTOP Board Level IBSTOP
Device Level

Purpose

Abort asynchronous I/O operation.

DOS Format

C

int ibstop (int ud)

QuickBASIC/BASIC

CALL ibstop (ud%) or status% = ilstop (ud%)

BASICA

CALL ibstop (ud%)

Windows Format

C

int ibstop (int ud)

Visual Basic

CALL ibstop (ud%) or status% = ilstop (ud%)

Direct Entry with C

DLLibstop (int ud, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibstop Lib "gpib.dll"
(ByVal ud%, ibsta%, iberr%, ibcntl&) As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-107 NI-488.2 FRM for DOS/Windows

IBSTOP Board Level IBSTOP
Device Level (Continued)

Input

 ud Board or device descriptor

Output

Function Return The value of ibsta

Description

The ibstop function aborts any asynchronous read, write, or command operation that is
in progress and resynchronizes the application with the driver. If asynchronous I/O is in
progress, the error bit is set in the status word, ibsta, and EABO is returned, indicating
that the I/O was successfully stopped.

Possible Errors

EABO Asynchronous I/O was successfully stopped.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-108 © National Instruments Corp.

IBTMO Board Level IBTMO
Device Level

Purpose

Change or disable the I/O timeout period.

DOS Format

C

int ibtmo (int ud, int v)

QuickBASIC/BASIC

CALL ibtmo (ud%, v%) or status% = iltmo (ud%, v%)

BASICA
\

CALL ibtmo (ud%, v%)

Windows Format

C

int ibtmo (int ud, int v)

Visual Basic

CALL ibtmo (ud%, v%) or status% = iltmo (ud%, v%)

Direct Entry with C

DLLibtmo(int ud, int v, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibtmo Lib "gpib.dll"
(ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As
Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-109 NI-488.2 FRM for DOS/Windows

IBTMO Board Level IBTMO
Device Level (Continued)

Input

 ud Board or device descriptor

 v Timeout duration code

Output

Function Return The value of ibsta

Description

The timeout period is set to v. The timeout period is used to select the maximum
duration allowed for a synchronous operation (for example, ibrd and ibwait). If the
operation does not complete before the timeout period elapses, then the operation is
aborted and TIMO is returned in ibsta. See Table 1-8 for a list of valid timeout values.
These timeout values represent the minimum timeout period. The actual period might be
longer.

Possible Errors

EARG v is invalid.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-110 © National Instruments Corp.

IBTMO Board Level IBTMO
Device Level (Continued)

Table 1-8. Timeout Code Values

Constant Value
of v

Minimum
Timeout

TNONE 0 disabled - no timeout

T10us 1 10 µs

T30us 2 30 µs

T100us 3 100 µs

T300us 4 300 µs

T1ms 5 1 ms

T3ms 6 3 ms

T10ms 7 10 ms

T30ms 8 30 ms

T100ms 9 100 ms

T300ms 10 300 ms

T1s 11 1 s

T3s 12 3 s

T10s 13 10 s

T30s 14 30 s

T100s 15 100 s

T300s 16 300 s

T1000s 17 1000 s

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-111 NI-488.2 FRM for DOS/Windows

IBTRAP Board Level IBTRAP

Purpose

Change the trap and display modes of the GPIB Applications Monitor utility, appmon.

DOS Format

C

void ibtrap (int mask, int mode)

QuickBASIC/BASIC

CALL ibtrap (mask%, mode%)
or

status% = iltrap (mask%, mode%)

BASICA

CALL ibtrap (mask%, mode%)

Windows Format

Not supported–refer to Chapter 6, GPIB Spy, in the NI-488.2 User Manual for
Windows for information about the monitoring utility for Windows applications.

Input

 mask Trap bit mask

 mode Trap mode

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-112 © National Instruments Corp.

IBTRAP Board Level IBTRAP
(Continued)

Description

mask specifies a bit mask with the same bit assignments as ibsta. Each mask bit can
be set to trap a call to the driver, when the corresponding bit appears in the status word
after the GPIB call. If all the bits are set, then every GPIB call is trapped. Mode
determines whether the recording and trapping occur. The valid values of mode are as
follows:

Mode Value Effect

1 Turn monitor off. No recording or trapping occurs

2 Turn recording on. All calls are recorded, but no trapping occurs.

3 Turn recording and trapping on. All calls are recorded and the
monitor is displayed whenever a trap condition occurs.

Refer to Chapter 6, appmon–GPIB Applications Monitor, in the NI-488.2 User Manual
for DOS for more information about appmon.

Possible Errors

EARG mode is an invalid value.

ECAP The GPIB Applications Monitor is not installed.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-113 NI-488.2 FRM for DOS/Windows

IBTRG Device Level IBTRG

Purpose

Trigger selected device.

DOS Format

C

int ibtrg (int ud)

QuickBASIC/BASIC

CALL ibtrg (ud%) or status% = iltrg (ud%)

BASICA

CALL ibtrg (ud%)

Windows Format

C

int ibtrg (int ud)

Visual Basic

CALL ibtrg (ud%) or status% = iltrg (ud%)

Direct Entry with C

DLLibtrg (int ud, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibtrg Lib "gpib.dll"
 (ByVal ud%, ibsta%, iberr%, ibcntl&) As Integer

Input

 ud Device descriptor

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-114 © National Instruments Corp.

IBTRG Device Level IBTRG
(Continued)

Output

Function Return The value of ibsta

Description

ibtrg sends the Group Execute Trigger (GET) message to the device described by ud.

Possible Errors

EARG ud is a valid descriptor but does not refer to a device.

EBUS No devices are connected to the GPIB.

ECIC The access board is not CIC. See the Device-Level Calls and
Bus Management section in the NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-115 NI-488.2 FRM for DOS/Windows

IBWAIT Board Level IBWAIT
Device Level

Purpose

Wait for GPIB events.

DOS Format

C

int ibwait (int ud, int mask)

QuickBASIC/BASIC

CALL ibwait (ud%, mask%) or status% = ilwait (ud%, mask%)

BASICA

CALL ibwait (ud%, mask%)

Windows Format

C

int ibwait (int ud, int mask)

Visual Basic

CALL ibwait (ud%, mask%) or status% = ilwait (ud%, mask%)

Direct Entry with C

DLLibwait(int ud, int mask, int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibwait Lib "gpib.dll"
(ByVal ud%, ByVal mask%, ibsta%, iberr%, ibcntl&)
 As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-116 © National Instruments Corp.

IBWAIT Board Level IBWAIT
Device Level (Continued)

Input

 ud Board or device descriptor

 mask Bit mask of GPIB events to wait on

Output

Function Return The value of ibsta

Description

ibwait monitors the events specified by mask and delays processing until one or more
of the events occurs. If the wait mask is zero, ibwait returns immediately with the
updated ibsta status word. If TIMO is set in the wait mask, ibwait returns when the
timeout period has elapsed (if one or more of the other specified events have not already
occurred). If TIMO is not set in the wait mask, then the function waits indefinitely for
one or more of the specified events to occur. The ibwait mask bits are identical to the
ibsta bits and they are described in Table 1-9. If ud is a device descriptor, the only
valid wait mask bits are TIMO, END, RQS and CMPL. If ud is a board descriptor, all
wait mask bits are valid except for RQS. You can configure the timeout period using the
ibtmo function.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-117 NI-488.2 FRM for DOS/Windows

IBWAIT Board Level IBWAIT
Device Level (Continued)

Possible Errors

EARG The bit set in mask is invalid.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ESRQ Device level: If RQS is set in the wait mask, then ESRQ
indicates that the Stuck SRQ condition exists. For more
information on serial polling, refer to the NI-488.2 user
manual.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-118 © National Instruments Corp.

IBWAIT Board Level IBWAIT
Device Level (Continued)

Table 1-9. Wait Mask Layout

Mnemonic Bit Pos. Hex Value Description

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 GPIB board detected END or EOS

SRQI 12 1000 SRQ asserted (board only)

RQS 11 800 Device requesting service (device only)

SPOLL 10 400 The board has been serial polled by the
Controller

EVENT 9 200 A DTAS, DCAS, or IFC event has occurred

CMPL 8 100 I/O completed

LOK 7 80 GPIB board is in Lockout State

REM 6 40 GPIB board is in Remote State

CIC 5 20 GPIB board is CIC

ATN 4 10 Attention is asserted

TACS 3 8 GPIB board is Talker

LACS 2 4 GPIB board is Listener

DTAS 1 2 GPIB board is in Device Trigger State

DCAS 0 1 GPIB board is in Device Clear State

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-119 NI-488.2 FRM for DOS/Windows

IBWRT Board Level IBWRT
Device Level

Purpose

Write data to a device from a user buffer.

DOS Format

C

int ibwrt (int ud, void *wrtbuf, long cnt)

QuickBASIC/BASIC

CALL ibwrt (ud%, wrtbuf$)
or

status% = ilwrt (ud%, wrtbuf$, cnt&)

BASICA

CALL ibwrt (ud%, wrtbuf$)

Windows Format

C

int ibwrt (int ud, void *wrtbuf, long cnt)

Visual Basic

CALL ibwrt (ud%, wrtbuf$)
or

status% = ilwrt (ud%, wrtbuf$, cnt&)

Direct Entry with C

DLLibwrt(int ud, void _far *wrtbuf, long cnt, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibwrt Lib "gpib.dll"
(ByVal ud%, ByVal wrtbuf$, ByVal cnt&, ibsta%,
 iberr%,ibcntl&) As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-120 © National Instruments Corp.

IBWRT Board Level IBWRT
Device Level (Continued)

Input

 ud Board or device descriptor

 wrtbuf Address of the buffer containing the bytes to write

 cnt Number of bytes to be written

Output

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibwrt addresses the GPIB and writes cnt bytes from the
memory location specified by wrtbuf to a GPIB device. The operation terminates
normally when cnt bytes have been sent. The operation terminates with an error if cnt
bytes could not be sent within the timeout period. The actual number of bytes transferred
is returned in the global variable ibcntl.

Board Level

If ud is a board descriptor, ibwrt writes cnt bytes of data from the buffer specified by
wrtbuf to a GPIB device; a board-level ibwrt assumes that the GPIB is already
properly addressed. The operation terminates normally when cnt bytes have been sent.
The operation terminates with an error if cnt bytes could not be sent within the timeout
period or, if the board is not CIC, the CIC sends the Device Clear message on the GPIB.
The actual number of bytes transferred is returned in the global variable ibcntl.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-121 NI-488.2 FRM for DOS/Windows

IBWRT Board Level IBWRT
Device Level (Continued)

Possible Errors

EABO Either cnt bytes were not sent within the timeout period, or a
Device Clear message was received after the write operation
began.

EADR Board level: The GPIB is not correctly addressed. Use
ibcmd to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners were detected on the bus.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-122 © National Instruments Corp.

IBWRTA Board Level IBWRTA
Device Level

Purpose

Write data asynchronously to a device from a user buffer.

DOS Format

C

int ibwrta (int ud, void *wrtbuf, long cnt)

QuickBASIC/BASIC

CALL ibwrta (ud%, wrtbuf$)
or

status% = ilwrta (ud%, wrtbuf$, cnt&)

BASICA

CALL ibwrta (ud%,wrtbuf$)

Windows Format

C

int ibwrta (int ud, void *wrtbuf, long cnt)

Visual Basic

CALL ibwrta (ud%, wrtbuf$)
or

status% = ilwrta (ud%, wrtbuf$, cnt&)

Direct Entry with C

DLLibwrta (int ud, void _far *wrtbuf, long cnt, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibwrta Lib "gpib.dll"
(ByVal ud%, ByVal wrtbuf$, ByVal cnt&, ibsta%, iberr%,
 ibcntl&) As Integer

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-123 NI-488.2 FRM for DOS/Windows

IBWRTA Board Level IBWRTA
Device Level (Continued)

Input

 ud Board or device descriptor

 wrtbuf Address of the buffer containing the bytes to write

 cnt Number of bytes to be written

Output

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibwrta addresses the GPIB and writes cnt bytes from the
buffer wrtbuf to a GPIB device. The operation terminates normally when cnt bytes
have been sent. The actual number of bytes transferred is returned in the global variable
ibcntl.

Board Level

If ud is a board descriptor, ibwrta begins an asynchronous write of cnt bytes of data
from the buffer pointed to by wrtbuf to a GPIB device. A board-level ibwrta
assumes that the GPIB is already properly addressed. The operation terminates normally
when cnt bytes have been sent. The operation terminates with an error if the board is
not CIC or if the CIC sends the Device Clear message on the GPIB. The actual number
of bytes transferred is returned in the global variable ibcntl.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-124 © National Instruments Corp.

IBWRTA Board Level IBWRTA
Device Level (Continued)

Board and Device Level

The asynchronous I/O calls (ibcmda, ibrda, ibwrta) are designed so that
applications can perform other non-GPIB operations while the I/O is in progress. Once
the asynchronous I/O has begun, further GPIB calls are strictly limited. Any calls that
would interfere with the I/O in progress are not allowed; the driver returns EOIP in this
case.

Once the I/O is complete, the application must resynchronize with the NI-488.2 driver.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta mask has the CMPL bit set, then the driver and
application are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

Possible Errors

EABO Board level: a Device Clear message was received from the
CIC.

EADR Board level: The GPIB is not correctly addressed. Use
ibcmd to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners were detected on the bus.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-125 NI-488.2 FRM for DOS/Windows

IBWRTF Board Level IBWRTF
Device Level

Purpose

Write data to a device from a file.

DOS Format

C

int ibwrtf (int ud, char *flname)

QuickBASIC/BASIC

CALL ibwrtf (ud%, flname$)
or

status% = ilwrtf (ud%, flname$)

BASICA

CALL ibwrtf (ud%, flname$)

Windows Format

C

int ibwrtf (int ud, char *flname)

Visual Basic

CALL ibwrtf (ud%, flname$)
or

status% = ilwrtf (ud%, flname$)

Direct Entry with C

DLLibwrtf (int ud, char _far *flname, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Function DLLibwrtf Lib "gpib.dll"
(ByVal ud%, ByVal flname$, ibsta%, iberr%, ibcntl&)
 As Integer

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-126 © National Instruments Corp.

IBWRTF Board Level IBWRTF
Device Level (Continued)

Input

 ud Board or device descriptor

 flname Name of file containing the data to be written

Output

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibwrtf addresses the GPIB and writes all of the bytes in
the file flname to a GPIB device. The operation terminates normally when all of the
bytes have been sent. The operation terminates with an error if all of the bytes could not
be sent within the timeout period. The actual number of bytes transferred is returned in
the global variable ibcntl.

Board Level

If ud is a board descriptor, ibwrtf writes all of the bytes in the file flname to a GPIB
device. A board-level ibwrtf assumes that the GPIB is already properly addressed.
The operation terminates normally when all of the bytes have been sent. The operation
terminates with an error if all of the bytes could not be sent within the timeout period or,
if the board is not CIC, the CIC sends the Device Clear message on the GPIB. The actual
number of bytes transferred is returned in the global variable ibcntl.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-127 NI-488.2 FRM for DOS/Windows

IBWRTF Board Level IBWRTF
Device Level (Continued)

Possible Errors

EABO Either the file could not be transferred within the timeout
period or a Device Clear message was received after the write
operation began.

EADR Board level: The GPIB is not correctly addressed. Use
ibcmd to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

EFSO ibwrtf could not access flname.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-128 © National Instruments Corp.

IBWRTI Board Level IBWRTI
Device Level

Purpose

Write data to a device from a user integer buffer.

DOS Format

C

Not supported–use ibwrt

QuickBASIC/BASIC

CALL ibwrti (ud%, wrtbuf%(), cnt&)
or

status% = ilwrti (ud%, wrtbuf%(), cnt&)

BASICA

CALL ibwrti (ud%, wrtbuf%(0), cnt%)

Windows Format

C

Not supported–use ibwrt

Visual Basic

CALL ibwrti (ud%, wrtbuf%(), cnt&)
or

status% = ilwrti (ud%, wrtbuf%(), cnt&)

Direct Entry with C

Not supported–use ibwrt

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-129 NI-488.2 FRM for DOS/Windows

IBWRTI Board Level IBWRTI
Device Level (Continued)

Direct Entry with Visual Basic

Declare Function DLLibwrt Lib "gpib.dll"
(ByVal ud%, wrtbuf%, ByVal cnt&, ibsta%, iberr%,ibcntl&)
 As Integer

Note: For direct entry with Visual Basic, the correct format is DLLibwrt, not
DLLibwrti.

Input

 ud Board or device descriptor

 wrtbuf Address of the integer buffer containing the bytes to write.
You can replace wrtbuf% with wrtbuf& to send long
integer data.

 cnt Number of bytes to be written

Output

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibwrti addresses the GPIB and writes cnt bytes from the
memory location specified by wrtbuf to a GPIB device. The operation terminates
normally when cnt bytes have been sent. The operation terminates with an error if cnt
bytes could not be sent within the timeout period. The actual number of bytes transferred
is returned in the global variable ibcntl.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-130 © National Instruments Corp.

IBWRTI Board Level IBWRTI
Device Level (Continued)

Board Level

If ud is a board descriptor, ibwrti writes cnt bytes of data from the buffer specified
by wrtbuf to a GPIB device; a board-level ibwrti assumes that the GPIB is already
properly addressed. The operation terminates normally when cnt bytes have been sent.
The operation terminates with an error if cnt bytes could not be sent within the timeout
period or, if the board is not CIC, the CIC sends the Device Clear message on the GPIB.
The actual number of bytes transferred is returned in the global variable ibcntl.

Note: The cnt parameter specifies the number of bytes to transfer. For example, if
you want to transfer 16 integers, the number of bytes is 16*2=32.

Possible Errors

EABO Either cnt bytes were not sent within the timeout period, or a
Device Clear message was received after the write operation
began.

EADR Board level: The GPIB is not correctly addressed. Use
ibcmd to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners were detected on the bus.

EOIP Asynchronous I/O is in progress.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-131 NI-488.2 FRM for DOS/Windows

IBWRTIA Board Level IBWRTIA
Device Level

Purpose

Write data asynchronously to a device from a user integer buffer.

DOS Format

C

Not supported–use ibwrta

QuickBASIC/BASIC

CALL ibwrtia (ud%, wrtbuf%(), cnt&)
or

status% = ilwrtia (ud%, wrtbuf%(), cnt&)

BASICA

CALL ibwrtia (ud%, wrtbuf%(0), cnt%)

Windows Format

C

Not supported–use ibwrta

Visual Basic

CALL ibwrtia (ud%, wrtbuf%(), cnt&)
or

status% = ilwrtia (ud%, wrtbuf%(), cnt&)

Direct Entry with C

Not supported–use ibwrta

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-132 © National Instruments Corp.

IBWRTIA Board Level IBWRTIA
Device Level (Continued)

Direct Entry with Visual Basic

Declare Function DLLibwrta Lib "gpib.dll"
(ByVal ud%, wrtbuf%, ByVal cnt&, ibsta%, iberr%,
 ibcntl&) As Integer

Note: For direct entry with Visual Basic, the correct format is DLLibwrt, not
DLLibwrtia.

Input

 ud Board or device descriptor

 wrtbuf Address of the integer buffer containing the bytes to write.
You can replace wrtbuf% with wrtbuf& to send long
integer data.

 cnt Number of bytes to be written

Output

Function Return The value of ibsta

Description

Device Level

If ud is a device descriptor, ibwrtia addresses the GPIB and writes cnt bytes from
the buffer pointed to by wrtbuf to a GPIB device. The operation terminates normally
when cnt bytes have been sent. The operation terminates with an error if cnt bytes
could not be sent within the timeout period. The actual number of bytes transferred is
returned in the global variable ibcntl.

Chapter 1 NI-488 Functions

© National Instruments Corp. 1-133 NI-488.2 FRM for DOS/Windows

IBWRTIA Board Level IBWRTIA
Device Level (Continued)

Board Level

If ud is a board descriptor, ibwrtia begins an asynchronous write of cnt bytes of data
from the buffer pointed to by wrtbuf to a GPIB device. A board-level ibwrtia
assumes that the GPIB is already properly addressed. The operation terminates normally
when cnt bytes have been sent. The operation terminates with an error if cnt bytes
could not be sent within the timeout period or, if the board is not CIC, the CIC sends the
Device Clear message on the GPIB. The actual number of bytes transferred is returned in
the global variable ibcntl.

Board and Device Level

The asynchronous I/O calls (ibcmda, ibrda, ibwrta) are designed so that
applications can perform other non-GPIB operations while the I/O is in progress. Once
the asynchronous I/O has begun, further GPIB calls are strictly limited. Any calls that
would interfere with the I/O in progress are not allowed; the driver returns EOIP in this
case.

Once the I/O is complete, the application must resynchronize with the NI-488.2 driver.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta mask has the CMPL bit set, then the driver and
application are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

Note: The cnt parameter specifies the number of bytes to transfer. For example, if
you want to transfer 16 integers, the number of bytes is 16*2=32.

NI-488 Functions Chapter 1

NI-488.2 FRM for DOS/Windows 1-134 © National Instruments Corp.

IBWRTIA Board Level IBWRTIA
Device Level (Continued)

Possible Errors

EABO Board level: a Device Clear message was received from the
CIC.

EADR Board level: The GPIB is not correctly addressed. Use
ibcmd to address the GPIB.

Device level: A conflict exists between the device GPIB
address and the GPIB address of the device access board. Use
ibpad and ibsad.

EBUS Device level: No devices are connected to the GPIB.

ECIC Device level: The access board is not CIC. See the
Device-Level Calls and Bus Management section in the
NI-488.2 user manual.

EDVR Either ud is invalid or the NI-488.2 driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners were detected on the bus.

EOIP Asynchronous I/O is in progress.

© National Instruments Corp. 2-1 NI-488.2 FRM for DOS/Windows

Chapter 2
NI-488.2 Routines

This chapter lists the available NI-488.2 routines and then describes the purpose, format,
input and output parameters, and possible errors for each routine.

For general programming information, refer to the NI-488.2 user manual. The user
manual explains how to develop and debug your program. It also describes the example
programs included with your NI-488.2 software.

Routine Names

The routines in this chapter are listed alphabetically.

Purpose

Each routine description includes a brief statement of the purpose of the routine.

DOS Format

The DOS format is given for each of the languages supported by the NI-488.2 software:

• Microsoft C version 5.1 or higher

• Microsoft Professional BASIC version 7.0 or higher and Microsoft Visual Basic for
MS-DOS version 1.0 or higher

• Microsoft QuickBASIC version 4.0 or higher

• BASICA and GWBASIC

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-2 © National Instruments Corp.

Windows Format

The Windows format is given for the following:

• Microsoft C (version 5.1 or higher), LabWindows/CVI for Windows, and Borland C++
(version 2.0 or higher)

• Microsoft Visual Basic version 1.0 or higher

• Direct entry into the Windows Dynamic Link Library gpib.dll

- Direct entry for Microsoft C version 5.1 or higher

- Direct entry for Microsoft Visual BASIC version 1.0 or higher

Input and Output

The input and output parameters for each routine are listed. Most of the NI-488.2
routines have an input parameter which is either a single address or a list of addresses.
The address parameter is a 16-bit integer that has two components: the low byte is a valid
primary address (0 to 30), and the high byte is a valid secondary address (NO_SAD(0) or
96 to 126). A list of addresses is an array of single addresses. You must mark the end of
this list with the constant NOADDR. An empty address list is either an array with only the
NOADDR constant in it, or a NULL pointer.

The C language interface header file includes the definition of a type (typedef) called
Addr4882_t. Use the Addr4882_t type when declaring addresses or address lists.

Description

The description section gives details about the purpose and effect of each routine.

Examples

Some function descriptions include sample code showing how to use the function. For
more detailed and complete examples, refer to the example programs that are included
with your NI-488.2 software. The example programs are described in Chapter 2 of the
NI-488.2 user manual.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-3 NI-488.2 FRM for DOS/Windows

Possible Errors

Each routine description includes a list of errors that could occur when the routine is
invoked.

List of NI-488.2 Routines

The following table contains an alphabetical list of each NI-488.2 routine.

Table 2-1. List of NI-488.2 Routines

Routine Purpose
AllSpoll Serial poll all devices

DevClear Clear a single device

DevClearList Clear multiple devices

EnableLocal Enable operations from the front panel of devices (leave remote
programming mode)

EnableRemote Enable remote GPIB programming for devices

FindLstn Find listening devices on the GPIB

FindRQS Determine which device is requesting service

GenerateREQF Cancel service request generated by GenerateREQT

GenerateREQT Request service from the GPIB Controller-In-Charge

GotoMultAddr Place the driver in multiple address mode

PassControl Pass control to another device with Controller capability

PPoll Perform a parallel poll on the GPIB

PPollConfig Configure a device for parallel polls

PPollUnconfig Unconfigure devices for parallel polls

RcvRespMsg Read data bytes from a device that is already addressed to talk

ReadStatusByte Serial poll a single device

Receive Read data bytes from a device

ReceiveSetup Address a device to be a Talker and the interface board ID to be
a Listener in preparation for RcvRespMsg

ResetSys Reset and initialize IEEE 488.2-compliant devices

(continues)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-4 © National Instruments Corp.

Table 2-1. List of NI-488.2 Routines (Continued)

Routine Purpose
Send Send data bytes to a device

SendCmds Send GPIB command bytes

SendDataBytes Send data bytes to devices that are already addressed to listen

SendIFC Reset the GPIB by sending interface clear

SendList Send data bytes to multiple GPIB devices

SendLLO Send the Local Lockout (LLO) message to all devices

SendSetup Set up devices to receive data in preparation for
SendDataBytes

SetRWLS Place devices in remote with lockout state

TestSRQ Determine the current state of the GPIB Service Request (SRQ)
line

TestSys Cause the IEEE 488.2-compliant devices to conduct self-tests

Trigger Trigger a device

TriggerList Trigger multiple devices

WaitSRQ Wait until a device asserts the GPIB Service Request (SRQ) line

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-5 NI-488.2 FRM for DOS/Windows

AllSpoll AllSpoll

Purpose

Serial poll all devices.

DOS Format

C

void AllSpoll (int boardID, Addr4882_t addrlist[],
 short resultlist[])

QuickBASIC/BASIC

CALL AllSpoll (boardID%, addrlist%(), resultlist%())

BASICA

CALL AllSpoll (boardID%, addrlist%(0), resultlist%(0))

Windows Format

C

void AllSpoll (int boardID, Addr4882_t addrlist[],
 short resultlist[])

Visual Basic

CALL AllSpoll (boardID%, addrlist%(), resultlist%())

Direct Entry with C

DLLAllSpoll(int boardID, Addr4882_t _far addrlist[],
 short _far resultlist[], int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLAllSpoll Lib "gpib.dll"
(ByVal boardID%, addrlist%, resultlist%, ibsta%, iberr%,
 ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-6 © National Instruments Corp.

AllSpoll AllSpoll
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses that is terminated by NOADDR

Output

 resultlist A list of serial poll response bytes corresponding to device
addresses in addrlist

Description

AllSpoll serial polls all of the devices described by addrlist. It stores the poll
responses in resultlist and the number of responses in ibcntl.

Possible Errors

EABO One of the devices timed out instead of responding to the
serial poll; ibcntl contains the index of the timed-out
device.

EARG An invalid address (out of range) appears in addrlist;
ibcntl is the index of the invalid address in the addrlist
array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-7 NI-488.2 FRM for DOS/Windows

DevClear DevClear

Purpose

Clear a single device.

DOS Format

C

void DevClear (int boardID, Addr4882_t address)

BASICA/QuickBASIC/BASIC

CALL DevClear (boardID%, address%)

Windows Format

C

void DevClear (int boardID, Addr4882_t address)

Visual Basic

CALL DevClear (boardID%, address%)

Direct Entry with C

DLLDevClear (int boardID, Addr4882_t address, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLDevClear Lib "gpib.dll"
(ByVal boardID%, ByVal address%, ibsta%, iberr%,
ibcntl&)

Input

 boardID The interface board number

 address Address of the device you want to clear

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-8 © National Instruments Corp.

DevClear DevClear
(Continued)

Description

DevClear sends the Selected Device Clear (SDC) GPIB message to the device
described by address. If address is the constant NOADDR, then the Universal
Device Clear (DCL) message is sent to all devices.

Possible Errors

EARG An address parameter is invalid (out of range).

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-9 NI-488.2 FRM for DOS/Windows

DevClearList DevClearList

Purpose

Clear multiple devices.

DOS Format

C

void DevClearList (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL DevClearList (boardID%, addrlist%())

BASICA

CALL DevClearList (boardID%, addrlist%(0))

Windows Format

C

void DevClearList (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL DevClearList (boardID%, addrlist%())

Direct Entry with C

DLLDevClearList (int boardID, Addr4882_t _far addrlist[],
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLDevClearList Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-10 © National Instruments Corp.

DevClearList DevClearList
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses terminated by NOADDR that you
want to clear

Description

DevClearList sends the Selected Device Clear (SDC) GPIB message to all the device
addresses described by addrlist. If addrlist contains only the constant NOADDR,
then the Universal Device Clear (DCL) message is sent to all the devices on the bus.

Possible Errors

EARG An invalid address (out of range) appears in addrlist;
ibcntl is the index of the invalid address in the addrlist
array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-11 NI-488.2 FRM for DOS/Windows

EnableLocal EnableLocal

Purpose

Enable operations from the front panel of devices (leave remote programming mode).

DOS Format

C

void EnableLocal (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL EnableLocal (boardID%, addrlist%())

BASICA

CALL EnableLocal (boardID%, addrlist%(0))

Windows Format

C

void EnableLocal (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL EnableLocal (boardID%, addrlist%())

Direct Entry with C

DLLEnableLocal (int boardID, Addr4882_t _far addrlist[],
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLEnableLocal Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-12 © National Instruments Corp.

EnableLocal EnableLocal
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses that is terminated by NOADDR

Description

EnableLocal sends the Go To Local (GTL) GPIB message to all the devices described
by addrlist. This places the devices in local mode. If addrlist contains only the
constant NOADDR, then the Remote Enable (REN) GPIB line is unasserted.

Possible Errors

EARG An invalid address (out of range) appears in addrlist;
ibcntl is the index of the invalid address in the addrlist
array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESAC The interface board is not configured as System Controller.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-13 NI-488.2 FRM for DOS/Windows

EnableRemote EnableRemote

Purpose

Enable remote GPIB programming for devices.

DOS Format

C

void EnableRemote (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL EnableRemote (boardID%, addrlist%())

BASICA

CALL EnableRemote (boardID%, addrlist%(0))

Windows Format

C

void EnableRemote (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL EnableRemote (boardID%, addrlist%())

Direct Entry with C

DLLEnableRemote (int boardID, Addr4882_t _far addrlist[],
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLEnableRemote Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-14 © National Instruments Corp.

EnableRemote EnableRemote
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses that is terminated by NOADDR

Description

EnableRemote asserts the Remote Enable (REN) GPIB line. All devices described by
addrlist are put in a listen-active state.

Possible Errors

EARG An invalid address (out of range) appears in addrlist;
ibcntl is the index of the invalid address in the addrlist
array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESAC The interface board is not configured as System Controller.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-15 NI-488.2 FRM for DOS/Windows

FindLstn FindLstn

Purpose

Find listening devices on the GPIB.

DOS Format

C

void FindLstn (int boardID, Addr4882_t padlist[],
 Addr4882_t resultlist[], int limit)

QuickBASIC/BASIC

CALL FindLstn (boardID%, padlist%(), resultlist%(), limit%)

BASICA

CALL FindLstn (boardID%, padlist%(0), resultlist%(0), limit%)

Windows Format

C

void FindLstn (int boardID, Addr4882_t padlist[],
Addr4882_t resultlist[], int limit)

Visual Basic

CALL FindLstn (boardID%, padlist%(), resultlist%(), limit%)

Direct Entry with C

DLLFindLstn (int boardID, Addr4882_t _far padlist[],
Addr4882_t _far resultlist[], int limit,
int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLFindLstn Lib "gpib.dll"
(ByVal boardID%, padlist%, resultlist%, ByVal limit%,
 ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-16 © National Instruments Corp.

FindLstn FindLstn
(Continued)

Input

 boardID The interface board number

 padlist A list of primary addresses that is terminated by NOADDR

 limit Total number of entries that can be placed in resultlist

Output

 resultlist Addresses of all listening devices found by FindLstn are
placed in this array.

Description

FindLstn tests all of the primary addresses in padlist as follows:

If a device is present at a primary address given in padlist, then the primary address is
stored in resultlist. Otherwise, all secondary addresses of the primary address are
tested, and the addresses of any devices found are stored in resultlist. No more
than limit addresses are stored in resultlist; ibcntl contains the actual number of
addresses stored in resultlist.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-17 NI-488.2 FRM for DOS/Windows

FindLstn FindLstn
(Continued)

Possible Errors

EARG An invalid primary address (out of range) appears in
padlist; ibcntl is the index of the invalid address in the
padlist array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ETAB The number of devices found on the GPIB exceed limit.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-18 © National Instruments Corp.

FindRQS FindRQS

Purpose

Determine which device is requesting service.

DOS Format

C

void FindRQS (int boardID, Addr4882_t addrlist[], short
*result)

QuickBASIC/BASIC

CALL FindRQS (boardID%, addrlist%(), result%)

BASICA

CALL FindRQS (boardID%, addrlist%(0), result%)

Windows Format

C

void FindRQS (int boardID, Addr4882_t addrlist[],
 short *result)

Visual Basic

CALL FindRQS (boardID%, addrlist%(), result%)

Direct Entry with C

DLLFindRQS (int boardID, Addr4882_t _far addrlist[],
short _far *result, int _far *ibsta,
int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLFindRQS Lib "gpib.dll"
(ByVal boardID%, addrlist%, result%, ibsta%, iberr%,
ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-19 NI-488.2 FRM for DOS/Windows

FindRQS FindRQS
(Continued)

Input

 boardID The interface board number

 addrlist List of device addresses that is terminated by NOADDR

Output

 result Serial poll response byte of the device that is requesting
service

Description

FindRQS serial polls the devices described by addrlist, in order, until it finds a
device which is requesting service. The serial poll response byte is then placed in
result. ibcntl contains the index of the device requesting service in addrlist. If
none of the devices are requesting service, then the index corresponding to NOADDR in
addrlist is returned in ibcntl and ETAB is returned in iberr.

Possible Errors

EARG An invalid address (out of range) appears in addrlist;
ibcntl is the index of the invalid address in the addrlist
array.

EBUS No devices are connected to the GPIB.

ECIC boardID is not the Controller-In-Charge; see SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB boardID is not installed or is not properly configured.

EOIP Asynchronous I/O is in progress.

ETAB None of the devices in addrlist are requesting service or
addrlist contains only NOADDR. ibcntl contains the
index of NOADDR in addrlist.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-20 © National Instruments Corp.

GenerateREQF GenerateREQF

Purpose

Cancel service request generated by GenerateREQT.

DOS Format

C

void GenerateREQF (int boardID, unsigned short GPIBaddr)

QuickBASIC/BASIC

Not supported

BASICA

Not supported

Windows Format

C

void GenerateREQF (int boardID, unsigned short GPIBaddr)

Visual Basic

Not supported

Direct Entry with C

DLLGenerateREQF (int boardID, unsigned short GPIBaddr,
int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Not supported

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-21 NI-488.2 FRM for DOS/Windows

GenerateREQF GenerateREQF
(Continued)

Input

 boardID The interface board number

 GPIBaddr The 5-bit GPIB addresses of the simulated device that is no
longer requesting service.

Description

The driver keeps track of the simulated devices currently requesting service so that it
knows when to unassert the SRQ bus line. GenerateREQF cancels the service request
of the simulated device at GPIBaddr. The driver unasserts the SRQ line if no other
simulated devices are requesting service. The driver usually calls GenerateREQF
automatically after the simulated device is serial polled. You can call this function if you
want to cancel the request for service before the device is serial polled.

For an example of the GenerateREQF routine call, refer to the description of the
GotoMultAddr routine.

Possible Errors

EARG GPIBaddr is an invalid 5-bit GPIB address. See
GotoMultAddr for a description of valid 5-bit GPIB
addresses.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB boardID is not installed or is not properly configured

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-22 © National Instruments Corp.

GenerateREQT GenerateREQT

Purpose

Request service from the GPIB Controller-In-Charge.

DOS Format

C

void GenerateREQT (int boardID, unsigned short GPIBaddr)

QuickBASIC/BASIC

Not supported

BASICA

Not supported

Windows Format

C

void GenerateREQT (int boardID, unsigned short GPIBaddr)

Visual Basic

Not supported

Direct Entry with C

DLLGenerateREQT (int boardID, unsigned short GPIBaddr,
int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Not supported

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-23 NI-488.2 FRM for DOS/Windows

GenerateREQT GenerateREQT
(Continued)

Input

 boardID The interface board number

 GPIBaddr The 5-bit GPIB address of the simulated device that is
requesting service

Description

The driver keeps track of the simulated devices currently requesting service so that it
knows when to assert and unassert the SRQ bus line. Use GenerateREQT when the
simulated device at GPIBaddr needs service from the CIC. GenerateREQT causes the
driver to assert the SRQ line. When the Controller determines that SRQ is asserted, it
conducts a serial poll of the device. The spollfunc then returns the appropriate serial
poll response byte. The driver sets the RSV (Request Service) bit to 1 before sending the
response byte to the Controller.

For an example of the GenerateREQT routine call, refer to the description of the
GotoMultAddr routine.

Possible Errors

EARG GPIBaddr is an invalid 5-bit GPIB address. See
GotoMultAddr for a description of valid 5-bit GPIB
addresses.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB boardID is not installed or is not properly configured.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-24 © National Instruments Corp.

GotoMultAddr GotoMultAddr

Purpose

Place the driver in multiple primary or secondary address mode.

DOS Format

C

void GotoMultAddr (int boardID, unsigned short type,
unsigned short (_far *addrfunc)(),
unsigned short (_far *spollfunc)())

QuickBASIC/BASIC

Not supported

BASICA

Not supported

Windows Format

C

void GotoMultAddr (int boardID, unsigned short type,
unsigned short (_far *addrfunc)(),
unsigned short (_far *spollfunc)())

Visual Basic

Not supported

Direct Entry with C

DLLGotoMultAddr (int boardID, unsigned short type,
unsigned short (_far *addrfunc)(),
unsigned short (_far *spollfunc)()),
int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Not supported

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-25 NI-488.2 FRM for DOS/Windows

GotoMultAddr GotoMultAddr
(Continued)

Input

 boardID The interface board number

 type Either the constant MultAddrPrimary or
MultAddrSecondary

 addrfunc The address of your address selection function

 spollfunc The address of your serial poll response function

Description

GotoMultAddr places the driver in multiple address mode. You must call
GotoMultAddr once for every board at the beginning of any program that simulates
multiple GPIB addresses. The type parameter specifies whether you want to use
primary or secondary address mode. You cannot use both.

addrfunc and spollfunc are pointers to functions you have written as part of the
application. addrfunc points to your address selection function. It is called whenever
a GPIB address is on the bus. Your address selection function must determine whether
the address is the address of one of the simulated GPIB devices. If it is a simulated
address, addrfunc should return 1. If it is not, addrfunc should return 0.
spollfunc points to your serial poll response function. It is called whenever one of
the simulated devices is serial polled. spollfunc should return the serial poll response
byte.

To disable multiple address mode, call ibonl with a 0 or 1. You must always call
ibonl with a 0 before your application program terminates. Otherwise, the driver
maintains the addrfunc and spollfunc pointers and might try to access the
functions when they are no longer in memory, causing your computer to lock up.

Before you use the GotoMultAddr routine, make sure that hardware interrupts on the
interface board have been enabled with either the ibconf utility in DOS, the GPIB
software configuration utility in Windows, or the ibconfig function. Because the
addrfunc and spollfunc functions are called at interrupt time, you must take special
care when writing your function code. Follow these rules when writing functions that are
called at interrupt time:

• Return from the interrupt call as soon as possible. Performing large calculations
prevents the system from performing other interrupt activities, such as maintaining the
system clock.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-26 © National Instruments Corp.

GotoMultAddr GotoMultAddr
(Continued)

• Make sure that any function you call is re-entrant. (Most system functions are not
re-entrant.) This includes DOS and BIOS functions, standard C library function,
Windows functions, and GPIB functions.

• Do not use a large amount of stack space. The stack provided to your function has
about 512 bytes available for its use. You should disable run-time stack overflow
checking using the /Gs option of the Microsoft C compiler.

• Ensure that your code and data segments are fixed in memory if your application is
written for Microsoft Windows 3. You can do this in the module definition file of your
application.

The Address Selection Function

The driver calls the address selection function whenever a primary or secondary GPIB
address is present on the bus. The driver passes the GPIB address to the function. The
function determines whether to accept or reject the given address. If the function accepts
the address, the interface board uses the given GPIB address. The application program
can then read from or write to the bus as if it were the device at the given GPIB address.

Here is the function prototype of the address selection function:

unsigned short _far _loadds addrfunc (short board, unsigned short
 type,unsigned short addr)

The _far directive tells the compiler to generate a far return when this function exits.
The _loadds directive tells the compiler to load the Data Segment register with the
default data segment of the application. The function can now access the global variables
of the application.

board is the index of the interface board on which the GPIB address is present. type is
the type of address that is present on the bus; either a talk address, a listen address, or a
talk address while the board is in Serial Poll Mode State. These types are defined by the
constants: MultAddrListen, MultAddrTalk, and MultAddrSerialPoll which
are defined in the language interface include file. addr is the 5-bit GPIB address that is
currently present on the bus.

This function should return a non-zero value to accept the given address. It should return
zero to reject the address.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-27 NI-488.2 FRM for DOS/Windows

GotoMultAddr GotoMultAddr
(Continued)

Serial Poll Response Function

The driver calls the serial poll response function when the interface board is serial polled
by the GPIB Controller-In-Charge. The driver passes the GPIB address of the device
being polled to this function. This function should return an 8-bit serial poll response
byte which is sent to the Controller. If the simulated device is requesting service through
the use of the GenerateREQT function at the time of the poll, the driver sets the
Request Service (RSV) bit to 1 before sending the response byte to the Controller.

Before the application calls the serial poll response function, it calls the address selection
function with type set to MultAddrSerialPoll. Because the address selection
function is called first, it can return zero to reject the address. This prevents the driver
from calling the serial poll response function.

Here is the function prototype of the serial poll response function:

unsigned short _far _loadds spollfunc (short board,
 unsigned short addr)

board is the index of the interface board on which the GPIB address is present. addr is
the 5-bit GPIB address that is currently present on the bus.

This function should return the 8-bit serial poll response byte that is sent to the
Controller.

Possible Errors

EARG The type parameter is invalid.

ECAP Hardware interrupt s are disabled.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-28 © National Instruments Corp.

GotoMultAddr GotoMultAddr
(Continued)

Example

The following example program in C simulates four GPIB devices at primary
addresses 1, 3, 24, and 30.

#include <stdio.h>
#include <string.h>
#include <process.h>
#include <bios.h>
#include "c:\at-gpib\c\decl.h"

#define TRUE 1
#define FALSE 0

#define LAD 0x20 /* listen address mask */
#define TAD 0x40 /* talk address mask */

#define BUFSIZE 512

/*
 * Globals.
 */
short addressed = FALSE;
unsigned short address;
char buffer[BUFSIZE + 2];

/*
 * The following function implements the address selection call-
 * back function. It is used to validate the addresses on the
 * bus. If GPIB addresses 1, 3, 24, or 30 are seen on the bus,
 * this function returns TRUE.
 */

unsigned short _far _loadds addrfunc (short board,
 unsigned short type,
 unsigned short addr)

{
 if ((addr == 1) || (addr == 3) ||
 (addr == 24) || (addr == 30)) {
 /*
 * If the device is to be serial polled, then accept
 * the address so that the spollfunc can be called to
 * return the serial poll response byte.
 */

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-29 NI-488.2 FRM for DOS/Windows

GotoMultAddr GotoMultAddr
(Continued)

 if (type == MultAddrSerialPoll) {
 return (TRUE);
 }
 /*
 * If this is a listen address, then set the global
 * "addressed" to TRUE and store the listen address in
 * the global "address".
 */

 else if (type == MultAddrListen) {
 addressed = TRUE;
 address = (LAD | addr);
 return (TRUE);
 }
 /*
 * If this is a talk address, then set the global
 * "addressed" to TRUE and store the talk address in
 * the global "address".
 */
 else if (type == MultAddrTalk) {
 addressed = TRUE;
 address = (TAD | addr);
 return (TRUE);
 }
 }
 /* Return FALSE since you do not claim this address.
 */
 return (FALSE);

} /* end of addrfunc */

/*
 * The following function implements the Serial Poll Response
 * call-back function. It always returns the GPIB address of the
 * simulated device as the serial poll response byte.
 */
unsigned short _far _loadds spollfunc (short board,
 unsigned short addr)
{
 return (addr|0x40);
}

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-30 © National Instruments Corp.

GotoMultAddr GotoMultAddr
(Continued)

/*
 * The following program is an example of how to simulate multiple
 * GPIB addresses. The program waits in a loop until one of its
 * simulated addresses is present on the bus. It then reads
 * data or writes data for the simulated device. If you press
 * any key, the program terminates.
 */
short _cdecl main (void)

{
 short testing;
 short SimulatedAddress;

 addressed = FALSE;
 testing = TRUE;

 /*
 * Enable multiple primary GPIB addresses for interface
 * board #0. Pass the address of the "address selection"
 * function (addrfunc) and the "serial poll response"
 * function (spollfunc).
 */

 GotoMultAddr(0, MultAddrPrimary, addrfunc, spollfunc);
 if (ibsta & ERR) {
 printf("Error calling GotoMultAddr.\n");
 ibonl(0, 0);
 exit(1);
 }
 /*
 * This is the main loop. Stay here until any key is pressed
 * on the keyboard.
 */

 while (testing) {
 printf("\nWaiting to be addressed....\n");
 /*
 * Check for any key to be pressed.
 */
 while (addressed == FALSE) {
 if (_bios_keybrd(_KEYBRD_READY)) {
 testing = FALSE;
 break;
 }
 }

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-31 NI-488.2 FRM for DOS/Windows

GotoMultAddr GotoMultAddr
(Continued)

 addressed = FALSE;
 SimulatedAddress = address;

 /*
 * As long as you did not press a key to exit, then the
 * program must be addressed to talk or listen.
 */

 if (testing == TRUE) {
 /*
 * If the address is a listen address, then read in
 * data byte for the simulated device. After reading
 * in the bytes, call GenerateREQT to request service
 * for the simulated device.
 */
 if ((SimulatedAddress & (LAD | TAD)) == LAD) {
 printf("Address %d is listening.\n",
 (SimulatedAddress & ~LAD));

 /*
 * Read a buffer for the given device.
 */
 RcvRespMsg(0, buffer,
 (unsigned long)BUFSIZE, STOPend);
 if (ibsta & ERR) {
 printf("Error from RcvRespMsg.\n");
 ibonl(0, 0);
 exit(1);
 }
 /*
 * Put a NULL byte at the end of the buffer and call
 * printf to output the buffer to the screen.
 */
 buffer[ibcntl] = '\0';
 printf("Received ‘%s’ for PAD %d\n", buffer,
 (SimulatedAddress & ~LAD));

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-32 © National Instruments Corp.

GotoMultAddr GotoMultAddr
(Continued)

 /*
 * Now assert SRQ to request service for
 * the simulated device.
 */
 GenerateREQT(0,(SimulatedAddress & ~LAD));
 }
 /*
 * If the address is a talk address, then output a
 * buffer containing the GPIB address of the simulated
 * device. Then call GenerateREQF to cancel the service
 * request for the simulated device.
 */
 else if ((SimulatedAddress & (LAD | TAD))
 == TAD) {
 printf("Address %d talking.\n",
 (SimulatedAddress & ~TAD));

 sprintf(buffer, "Data from GPIB address %d.",
 (SimulatedAddress & ~TAD));

 SendDataBytes(0, buffer,
 (unsigned long)strlen(buffer), DABend);
 if (ibsta & ERR) {
 printf("Error from SendDataBytes.\n");
 ibonl(0, 0);
 exit(1);
 }

 GenerateREQF(0,(SimulatedAddress & ~TAD));
 }
 else {
 printf("NOT talk or listen addressed.\n");
 ibonl(0, 0);
 exit(1);
 }
 }
 }
 /*
 * You must call ibonl with a value of 0 before exiting the
 * program.
 */
 ibonl(0, 0);

 return 0;

} /* end of main */

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-33 NI-488.2 FRM for DOS/Windows

PassControl PassControl

Purpose

Pass control to another device with Controller capability.

DOS Format

C

void PassControl (int boardID, Addr4882_t address)

BASICA/QuickBASIC/BASIC

CALL PassControl (boardID%, address%)

Windows Format

C

void PassControl (int boardID, Addr4882_t address)

Visual Basic

CALL PassControl (boardID%, address%)

Direct Entry with C

DLLPassControl (int boardID, Addr4882_t address,
int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLPassControl Lib "gpib.dll"
(ByVal boardID%, ByVal address%, ibsta%, iberr%,
ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-34 © National Instruments Corp.

PassControl PassControl
(Continued)

Input

 boardID The interface board number

 address Address of the device to which you want to pass control

Description

PassControl sends the Take Control (TCT) GPIB message to the device described by
address. That device becomes Controller-In-Charge and boardID is no longer CIC.

Possible Errors

EARG The address parameter is invalid (out of range) or NOADDR.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-35 NI-488.2 FRM for DOS/Windows

PPoll PPoll

Purpose

Perform a parallel poll on the GPIB.

DOS Format

C

void PPoll (int boardID, short *result)

BASICA/QuickBASIC/BASIC

CALL PPoll (boardID%, result%)

Windows Format

C

void PPoll (int boardID, short *result)

Visual Basic

CALL PPoll (boardID%, result%)

Direct Entry with C

DLLPPoll (int boardID, short _far *result, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLPPoll Lib "gpib.dll"
(ByVal boardID%, result%, ibsta%, iberr%, ibcntl&)

Input

 boardID The interface board number

Output

result The parallel poll result

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-36 © National Instruments Corp.

PPoll PPoll
(Continued)

Description

PPoll conducts a parallel poll and the result is placed in result. Each of the eight
bits of result represents the status information for each device configured for a parallel
poll. The interpretation of the status information is based on the latest parallel poll
configuration command sent to each device (see PPollConfig and
PPollUnconfig). The Controller can use parallel polling to obtain one-bit,
device-dependent status messages from up to eight devices simultaneously.

For more information on parallel polling, refer to the NI-488.2 user manual.

Possible Errors

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-37 NI-488.2 FRM for DOS/Windows

PPollConfig PPollConfig

Purpose

Configure a device to respond to parallel polls.

DOS Format

C

void PPollConfig (int boardID, Addr4882_t address,
int dataline, int lineSense)

BASICA/QuickBASIC/BASIC

CALL PPollConfig (boardID%, address%, dataline%, lineSense%)

Windows Format

C

void PPollConfig (int boardID, Addr4882_t address,
int dataline, int lineSense)

Visual Basic

CALL PPollConfig (boardID%, address%, dataline%, lineSense%)

Direct Entry with C

DLLPPollConfig (int boardID, Addr4882_t address, int dataline,
 int lineSense, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLPPollConfig Lib "gpib.dll"
(ByVal boardID%, ByVal address%, ByVal dataline%,
 ByVal lineSense%, ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-38 © National Instruments Corp.

PPollConfig PPollConfig
(Continued)

Input

 boardID The interface board number

 address Address of the device to be configured

 dataline Data line (a value in the range of 1 to 8) on which the device
responds to parallel polls

 lineSense Sense (either 0 or 1) of the parallel poll response

Description

PPollConfig configures the device described by address to respond to parallel
polls by asserting or not asserting the GPIB data line, dataline. If lineSense
equals the individual status (ist) bit of the device, then the assigned GPIB data line is
asserted during a parallel poll. Otherwise, the data line is not asserted during a parallel
poll. The Controller can use parallel polling to obtain one-bit, device-dependent status
messages from up to eight devices simultaneously.

For more information on parallel polling, refer to the NI-488.2 user manual.

Possible Errors

EARG The address parameter is invalid (out of range) or NOADDR;
dataline is not in the range 1 to 8, or lineSense is not 0
or 1.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-39 NI-488.2 FRM for DOS/Windows

PPollUnconfig PPollUnconfig

Purpose

Unconfigure devices for parallel polls.

DOS Format

C

void PPollUnconfig (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL PPollUnconfig (boardID%, addrlist%())

BASICA

CALL PPollUnconfig (boardID%, addrlist%(0))

Windows Format

C

void PPollUnconfig (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL PPollUnconfig (boardID%, addrlist%())

Direct Entry with C

DLLPPollUnconfig (int boardID, Addr4882_t _far addrlist[],
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLPPollUnconfig Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%,
 ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-40 © National Instruments Corp.

PPollUnconfig PPollUnconfig
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses that is terminated by NOADDR

Description

PPollUnconfig unconfigures all the devices described by addrlist for parallel
polls. If addrlist contains only the constant NOADDR, then the Parallel Poll
Unconfigure (PPU) GPIB message is sent to all GPIB devices. The devices unconfigured
by this function do not participate in subsequent parallel polls.

For more information on parallel polling, refer to the NI-488.2 user manual.

Possible Errors

EARG An invalid address (out of range) appears in addrlist;
ibcntl is the index of the invalid address in the addrlist
array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-41 NI-488.2 FRM for DOS/Windows

RcvRespMsg RcvRespMsg

Purpose

Read data bytes from a device that is already addressed to talk.

DOS Format

C

void RcvRespMsg (int boardID, void *buffer, long cnt,
 int termination)

BASICA/QuickBASIC/BASIC

CALL RcvRespMsg (boardID%, buffer$, termination%)

Windows Format

C

void RcvRespMsg (int boardID, void *buffer, long cnt,
 int termination)

Visual Basic

CALL RcvRespMsg (boardID%, buffer$, termination%)

Direct Entry with C

DLLRcvRespMsg (int boardID, void _far *buffer, long cnt,
 int termination, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLRcvRespMsg Lib "gpib.dll"
(ByVal boardID%, ByVal buffer$, ByVal cnt&,
 ByVal termination%, ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-42 © National Instruments Corp.

RcvRespMsg RcvRespMsg
(Continued)

Input

 boardID The interface board number

 cnt Number of bytes read

 termination Description of the data termination mode (STOPend or an
8-bit EOS character)

Output

 buffer Stores the received data bytes

Description

RcvRespMsg reads up to cnt bytes from the GPIB and places these bytes into
buffer. Data bytes are read until either cnt data bytes have been read or the
termination condition is detected. If the termination condition is STOPend, the read is
stopped when a byte is received with the EOI line asserted. Otherwise, the read is
stopped when the 8-bit EOS character is detected. The actual number of bytes transferred
is returned in the global variable ibcntl.

RcvRespMsg assumes that the interface board is already in listen-active state and a
device is already addressed to be a Talker (see ReceiveSetup or Receive).

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-43 NI-488.2 FRM for DOS/Windows

RcvRespMsg RcvRespMsg
(Continued)

Possible Errors

EABO The I/O timeout period elapsed before all the bytes were
received.

EADR The interface board is not in the listen-active state; use
ReceiveSetup to address the GPIB properly.

EARG The termination parameter is invalid. It must be either
STOPend or an 8-bit EOS character.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-44 © National Instruments Corp.

ReadStatusByte ReadStatusByte

Purpose

Serial poll a single device.

DOS Format

C

void ReadStatusByte (int boardID, Addr4882_t address,
 short *result)

BASICA/QuickBASIC/BASIC

CALL ReadStatusByte (boardID%, address%, result%)

Windows Format

C

void ReadStatusByte (int boardID, Addr4882_t address,
 short *result)

Visual Basic

CALL ReadStatusByte (boardID%, address%, result%)

Direct Entry with C

DLLReadStatusByte (int boardID, Addr4882_t address,
 short _far *result, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLReadStatusByte Lib "gpib.dll"
(ByVal boardID%, ByVal address%, result%, ibsta%,
 iberr%, ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-45 NI-488.2 FRM for DOS/Windows

ReadStatusByte ReadStatusByte
(Continued)

Input

 boardID The interface board number

 address A device address

Output

 result Serial poll response byte

Description

ReadStatusByte serial polls the device described by address. The response byte
is stored in result.

Possible Errors

EABO The device times out instead of responding to the serial poll.

EARG The address parameter is invalid (out of range).

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-46 © National Instruments Corp.

Receive Receive

Purpose

Read data bytes from a device.

DOS Format

C

void Receive (int boardID, Addr4882_t address, void *buffer,
 long cnt, int termination)

BASICA/QuickBASIC/BASIC

CALL Receive (boardID%, address%, buffer$, termination%)

Windows Format

C

void Receive (int boardID, Addr4882_t address, void *buffer,
 long cnt, int termination)

Visual Basic

CALL Receive (boardID%, address%, buffer$, termination%)

Direct Entry with C

DLLReceive (int boardID, Addr4882_t address, void _far *buffer,
 long cnt, int termination, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLReceive Lib "gpib.dll"
(ByVal boardID%, ByVal address%, ByVal buffer$,
ByVal cnt&, ByVal termination%, ibsta%, iberr%, ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-47 NI-488.2 FRM for DOS/Windows

Receive Receive
(Continued)

Input

 boardID The interface board number

 address Address of a device from which to receive data

 cnt Number of bytes to read

 termination Description of the data termination mode (STOPend or an
EOS character)

Output

 buffer Stores the received data bytes

Description

Receive addresses the device described by address to talk and the interface board to
listen. Then up to cnt bytes are read and placed into the buffer. Data bytes are read
until either cnt bytes have been read or the termination condition is detected. If the
termination condition is STOPend, the read is stopped when a byte is received with the
EOI line asserted. Otherwise, the read is stopped when the 8-bit EOS character is
detected. The actual number of bytes transferred is returned in the global variable
ibcntl.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-48 © National Instruments Corp.

Receive Receive
(Continued)

Possible Errors

EABO The I/O timeout period elapsed before all the bytes were
received.

EARG The address or termination parameter is invalid (out of
range), or address is NOADDR.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-49 NI-488.2 FRM for DOS/Windows

ReceiveSetup ReceiveSetup

Purpose

Address a device to be a Talker and the interface board to be a Listener in preparation for
RcvRespMsg.

DOS Format

C

void ReceiveSetup (int boardID, Addr4882_t address)

BASICA/QuickBASIC/BASIC

CALL ReceiveSetup (boardID%, address%)

Windows Format

C

void ReceiveSetup (int boardID, Addr4882_t address)

Visual Basic

CALL ReceiveSetup (boardID%, address%)

Direct Entry with C

DLLReceiveSetup (int boardID, Addr4882_t address,
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLReceiveSetup Lib "gpib.dll"
(ByVal boardID%, ByVal address%, ibsta%, iberr%,
 ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-50 © National Instruments Corp.

ReceiveSetup ReceiveSetup
(Continued)

Input

 boardID The interface board number

address Address of a device to be talk addressed

Description

ReceiveSetup makes the device described by address talker-active and makes the
interface board listen-active. This call is usually followed by a call to RcvRespMsg to
transfer data from the device to the interface board. This routine is particularly useful to
make multiple calls to RcvRspMsg; it eliminates the need to readdress the device to
receive every block of data.

Possible Errors

EARG The address parameter is invalid (out of range) or NOADDR.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-51 NI-488.2 FRM for DOS/Windows

ResetSys ResetSys

Purpose

Reset and initialize IEEE 488.2-compliant devices.

DOS Format

C

void ResetSys (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL ResetSys (boardID%, addrlist%())

BASICA

CALL ResetSys (boardID%, addrlist%(0))

Windows Format

C

void ResetSys (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL ResetSys (boardID%, addrlist%())

Direct Entry with C

DLLResetSys (int boardID, Addr4882_t _far addrlist[],
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLResetSys Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%,
 ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-52 © National Instruments Corp.

ResetSys ResetSys
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses that is terminated by NOADDR

Description

The reset and initialization take place in three steps. The first step resets the GPIB by
asserting the Remote Enable (REN) line and then the Interface Clear (IFC) line. The
second step clears all of the devices by sending the Universal Device Clear (DCL) GPIB
message. The final step causes IEEE 488.2-compliant devices to perform device-specific
reset and initialization. This step is accomplished by sending the message "*RST\n" to
the devices described by addrlist.

Possible Errors

EABO I/O operation is aborted.

EARG An invalid address (out of range) appears in addrlist
(ibcntl is the index of the invalid address in the addrlist
array), or the addrlist is empty.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners are on the GPIB.

EOIP Asynchronous I/O is in progress.

ESAC Board is not System Controller.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-53 NI-488.2 FRM for DOS/Windows

Send Send

Purpose

Send data bytes to a device.

DOS Format

C

void Send (int boardID, Addr4882_t address, void *buffer,
 long datacnt, int eotmode)

BASICA/QuickBASIC/BASIC

CALL Send (boardID%, address%, buffer$, eotmode%)

Windows Format

C

void Send (int boardID, Addr4882_t address, void *buffer,
 long datacnt, int eotmode)

Visual Basic

CALL Send (boardID%, address%, buffer$, eotmode%)

Direct Entry with C

DLLSend (int boardID, Addr4882_t address, void _far *buffer,
 long datacnt, int eotmode, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSend Lib "gpib.dll"
(ByVal boardID%, ByVal address%, ByVal buffer$,
 ByVal datacnt&, ByVal eotmode%, ibsta%, iberr%,
ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-54 © National Instruments Corp.

Send Send
(Continued)

Input

 boardID The interface board number

 address Address of a device to which data is sent

 buffer The data bytes to be sent

 datacnt Number of bytes to be sent

 eotmode The data termination mode: DABend, NULLend, or NLend

Description

Send addresses the device described by address to listen and the interface board to
talk. Then datacnt bytes from buffer are sent to the device. The last byte is sent
with the EOI line asserted if eotmode is DABend. The last byte is sent without the EOI
line asserted if eotmode is NULLend. If eotmode is NLend then a new line
character ('\n') is sent with the EOI line asserted after the last byte of buffer. The
actual number of bytes transferred is returned in the global variable ibcntl.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-55 NI-488.2 FRM for DOS/Windows

Send Send
(Continued)

Possible Errors

EABO The I/O timeout period has expired before all of the bytes were
sent.

EARG The address parameter is invalid (out of range or the
constant NOADDR), or the buffer is empty and the
eotmode is DABend.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners are on the GPIB to accept the data bytes.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-56 © National Instruments Corp.

SendCmds SendCmds

Purpose

Send GPIB command bytes.

DOS Format

C

void SendCmds (int boardID, void *buffer, long cnt)

BASICA/QuickBASIC/BASIC

CALL SendCmds (boardID%, buffer$)

Windows Format

C

void SendCmds (int boardID, void *buffer, long cnt)

Visual Basic

CALL SendCmds (boardID%, buffer$)

Direct Entry with C

DLLSendCmds (int boardID, void _far *buffer, long cnt,
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSendCmds Lib "gpib.dll"
(ByVal boardID%, ByVal buffer$, ByVal cnt&, ibsta%,
 iberr%, ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-57 NI-488.2 FRM for DOS/Windows

SendCmds SendCmds
(Continued)

Input

 boardID The interface board number

 buffer Command bytes to be sent

 cnt Number of bytes to be sent

Description

SendCmds sends cnt command bytes from buffer over the GPIB as command bytes
(interface messages). The number of command bytes transferred is returned in the global
variable ibcntl. Refer to Appendix A, Multiline Interface Messages, for a listing of
the defined interface messages.

Use command bytes to configure the state of the GPIB, not to send instructions to GPIB
devices. Use Send or SendList to send device-specific instructions.

Possible Errors

EABO The I/O timeout period expired before all of the command
bytes were sent.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No devices are connected to the GPIB.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-58 © National Instruments Corp.

SendDataBytes SendDataBytes

Purpose

Send data bytes to devices that are already addressed to listen.

DOS Format

C

void SendDataBytes (int boardID, void *buffer, long datacnt,
 int eotmode)

BASICA/QuickBASIC/BASIC

CALL SendDataBytes (boardID%, buffer$, eotmode%)

Windows Format

C

void SendDataBytes (int boardID, void *buffer, long datacnt,
 int eotmode)

Visual Basic

CALL SendDataBytes (boardID%, buffer$, eotmode%)

Direct Entry with C

DLLSendDataBytes (int boardID, void _far *buffer, long datacnt,
 int eotmode, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSendDataBytes Lib "gpib.dll"
(ByVal boardID%, ByVal buffer$, ByVal datacnt&,
 ByVal eotmode%, ibsta%, iberr%, ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-59 NI-488.2 FRM for DOS/Windows

SendDataBytes SendDataBytes
(Continued)

Input

 boardID The interface board number

 buffer The data bytes to be sent

 datacnt Number of bytes to be sent

 eotmode The data termination mode: DABend, NULLend, or NLend

Description

SendDataBytes sends datacnt number of bytes from the buffer to devices which
are already addressed to listen. The last byte is sent with the EOI line asserted if
eotmode is DABend; the last byte is sent without the EOI line asserted if eotmode is
NULLend. If eotmode is NLend then a new line character ('\n') is sent with the EOI
line asserted after the last byte. The actual number of bytes transferred is returned in the
global variable ibcntl.

SendDataBytes assumes that the interface board is in talk-active state and that
devices are already addressed as Listeners on the GPIB (see SendSetup, Send, or
SendList).

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-60 © National Instruments Corp.

SendDataBytes SendDataBytes
(Continued)

Possible Errors

EABO The I/O timeout period expired before all of the bytes were
sent.

EADR Interface boardID is not talk-active; use SendSetup to
address the GPIB properly.

EARG The eotmode parameter is invalid (it can be only DABend,
NULLend, or NLend), or the buffer is empty and the
eotmode is DABend.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners are on the GPIB to accept the data bytes; use
SendSetup to address the GPIB properly.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-61 NI-488.2 FRM for DOS/Windows

SendIFC SendIFC

Purpose

Reset the GPIB by sending interface clear.

DOS Format

C

void SendIFC (int boardID)

BASICA/QuickBASIC/BASIC

CALL SendIFC (boardID%)

Windows Format

C

void SendIFC (int boardID)

Visual Basic

CALL SendIFC (boardID%)

Direct Entry with C

DLLSendIFC (int boardID, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSendIFC Lib "gpib.dll"
(ByVal boardID%, ibsta%, iberr%, ibcntl&)

Input

 boardID The interface board number

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-62 © National Instruments Corp.

SendIFC SendIFC
(Continued)

Description

SendIFC is used as part of GPIB initialization. It forces the interface board to be
Controller-In-Charge of the GPIB. It also ensures that the connected devices are all
unaddressed and that the interface functions of the devices are in their idle states.

Possible Errors

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESAC The interface board is not configured as the System Controller;
see ibrsc.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-63 NI-488.2 FRM for DOS/Windows

SendList SendList

Purpose

Send data bytes to multiple GPIB devices.

DOS Format

C

void SendList (int boardID, Addr4882_t addrlist[], void *buffer,
 long datacnt, int eotmode)

QuickBASIC/BASIC

CALL SendList (boardID%, addrlist%(), buffer$, eotmode%)

BASICA

CALL SendList (boardID%, addrlist%(0), buffer$, eotmode%)

Windows Format

C

void SendList (int boardID, Addr4882_t addrlist[],
void *buffer, long datacnt, int eotmode)

Visual Basic

CALL SendList (boardID%, addrlist%(), buffer$, eotmode%)

Direct Entry with C

DLLSendList (int boardID, Addr4882_t _far addrlist[],
void _far *buffer, long datacnt, int eotmode,
int _far *ibsta, int _far *iberr,
long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSendList Lib "gpib.dll"
(ByVal boardID%, addrlist%, ByVal buffer$,
 ByVal datacnt&, ByVal eotmode%, ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-64 © National Instruments Corp.

SendList SendList
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses to send data to

 buffer The data bytes to be sent

 datacnt Number of bytes transmitted

 eotmode The data termination mode: DABend, NULLend, or NLend.

Description

SendList addresses the devices described by addrlist to listen and the interface
board to talk. Then, datacnt bytes from buffer are sent to the devices. The last byte is
sent with the EOI line asserted if eotmode is DABend. The last byte is sent without the
EOI line asserted if eotmode is NULLend. If eotmode is NLend, then a new line
character ('\n') is sent with the EOI line asserted after the last byte. The actual number
of bytes transferred is returned in the global variable ibcntl.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-65 NI-488.2 FRM for DOS/Windows

SendList SendList
(Continued)

Possible Errors

EABO The I/O timeout period expired before all of the bytes were
sent.

EARG An invalid address (out of range) appears in addrlist
(ibcntl is the index of the invalid address in the addrlist
array), the eotmode parameter is invalid (eotmode can be
only DABend, NULLend, or NLend), or the buffer is
empty and the eotmode is DABend.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-66 © National Instruments Corp.

SendLLO SendLLO

Purpose

Send the Local Lockout (LLO) message to all devices.

DOS Format

C

void SendLLO (int boardID)

BASICA/QuickBASIC/BASIC

CALL SendLLO (boardID%)

Windows Format

C

void SendLLO (int boardID)

Visual Basic

CALL SendLLO (boardID%)

Direct Entry with C

DLLSendLLO (int boardID, int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSendLLO Lib "gpib.dll"
(ByVal boardID%, ibsta%, iberr%, ibcntl&)

Input

 boardID The interface board number

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-67 NI-488.2 FRM for DOS/Windows

SendLLO SendLLO
(Continued)

Description

SendLLO sends the GPIB Local Lockout (LLO) message to all devices. While Local
Lockout is in effect, only the Controller-In-Charge can alter the state of the devices by
sending appropriate GPIB messages. SendLLO is reserved for use in unusual
local/remote situations. In most cases, use SetRWLS to place devices in Remote With
Lockout State.

Possible Errors

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESAC The interface board is not configured as System Controller.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-68 © National Instruments Corp.

SendSetup SendSetup

Purpose

Set up devices to receive data in preparation for SendDataBytes.

DOS Format

C

void SendSetup (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL SendSetup (boardID%, addrlist%())

BASICA

CALL SendSetup (boardID%, addrlist%(0))

Windows Format

C

void SendSetup (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL SendSetup (boardID%, addrlist%())

Direct Entry with C

DLLSendSetup (int boardID, Addr4882_t _far addrlist[],
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSendSetup Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%,
 ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-69 NI-488.2 FRM for DOS/Windows

SendSetup SendSetup
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses that is terminated by NOADDR

Description

SendSetup makes the devices described by addrlist listen-active and makes the
interface board talk-active. This call is usually followed by SendDataBytes to
actually transfer data from the interface board to the devices. SendSetup is particularly
useful to set up the addressing before making multiple calls to SendDataBytes; it
eliminates the need to readdress the devices for every block of data.

Possible Errors

EARG The addrlist is empty, or an invalid address (out of range)
appears in addrlist; ibcntl is the index of the invalid
address in the addrlist array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-70 © National Instruments Corp.

SetRWLS SetRWLS

Purpose

Place devices in Remote With Lockout State.

DOS Format

C

void SetRWLS (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL SetRWLS (boardID%, addrlist%())

BASICA

CALL SetRWLS (boardID%, addrlist%(0))

Windows Format

C

void SetRWLS (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL SetRWLS (boardID%, addrlist%())

Direct Entry with C

DLLSetRWLS (int boardID, Addr4882_t _far addrlist[],
int _far *ibsta, int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLSetRWLS Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%, ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-71 NI-488.2 FRM for DOS/Windows

SetRWLS SetRWLS
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses terminated by NOADDR

Description

SetRWLS places the devices described by addrlist in remote mode by asserting the
Remote Enable (REN) GPIB line. Then those devices are placed in lockout state by the
Local Lockout (LLO) GPIB message. You cannot program those devices locally until the
Controller-In-Charge releases the Local Lockout. To release the Local Lockout, use the
EnableLocal NI-488.2 routine.

Possible Errors

EARG An invalid address (out of range) appears in addrlist
(ibcntl is the index of the invalid address in the addrlist
array), or the addrlist is empty.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

ESAC The interface board is not configured as System Controller.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-72 © National Instruments Corp.

TestSRQ TestSRQ

Purpose

Determine the current state of the GPIB Service Request (SRQ) line.

DOS Format

C

void TestSRQ (int boardID, short *result)

BASICA/QuickBASIC/BASIC

CALL TestSRQ (boardID%, result%)

Windows Format

C

void TestSRQ (int boardID, short *result)

Visual Basic

CALL TestSRQ (boardID%, result%)

Direct Entry with C

DLLTestSRQ (int boardID, short _far *result, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLTestSRQ Lib "gpib.dll"
(ByVal boardID%, result%, ibsta%, iberr%, ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-73 NI-488.2 FRM for DOS/Windows

TestSRQ TestSRQ
(Continued)

Input

 boardID The interface board number

Output

 result State of the SRQ line: non-zero if the line is asserted, zero if
the line is not asserted

Description

TestSRQ returns the current state of the GPIB SRQ line in result. If SRQ is asserted,
then result contains a non-zero value. Otherwise, result contains a zero. Use
TestSRQ to get the current state of the GPIB SRQ line. Use WaitSRQ to wait until
SRQ is asserted.

Possible Errors

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-74 © National Instruments Corp.

TestSys TestSys

Purpose

Cause IEEE 488.2-compliant devices to conduct self-tests.

DOS Format

C

void TestSys (int boardID, Addr4882_t addrlist[], short
resultlist[])

QuickBASIC/BASIC

CALL TestSys (boardID%, addrlist%(), resultlist%())

BASICA

CALL TestSys (boardID%, addrlist%(0), resultlist%(0))

Windows Format

C

void TestSys (int boardID, Addr4882_t addrlist[], short
resultlist[])

Visual Basic

CALL TestSys (boardID%, addrlist%(), resultlist%())

Direct Entry with C

DLLTestSys (int boardID, Addr4882_t _far addrlist[],
 short _far resultlist[], int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLTestSys Lib "gpib.dll"
(ByVal boardID%, addrlist%, resultlist%, ibsta%, iberr%,
 ibcntl&)

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-75 NI-488.2 FRM for DOS/Windows

TestSys TestSys
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses terminated by NOADDR

Output

resultlist A list of test results; each entry corresponds to an address in
addrlist

Description

TestSys sends the "*TST?\n" message to the IEEE 488.2-compliant devices
described by addrlist. The "*TST?\n" message instructs them to conduct their
self-test procedures. A 16-bit test result code is read from each device and stored in
resultlist. A test result of "0\n" indicates that the device passed its self-test. Any
other value indicates that the device failed its self-test. Refer to the manual that came
with your device to determine the meaning of the failure code. A test result of -1
indicates that the I/O timeout period elapsed before the device sent its result code.
ibcntl contains the number of devices that failed.

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-76 © National Instruments Corp.

TestSys TestSys
(Continued)

Possible Errors

EABO The interface board timed out before receiving a result from a
device; ibcntl contains the index of the first device that
timed out. -1 is stored as the test result for the timed-out
device.

EARG An invalid address (out of range) appears in addrlist
(ibcntl is the index of the invalid address in the addrlist
array), or the addrlist is empty.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

ENOL No Listeners are on the GPIB.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-77 NI-488.2 FRM for DOS/Windows

Trigger Trigger

Purpose

Trigger a device.

DOS Format

C

void Trigger (int boardID, Addr4882_t address)

BASICA/QuickBASIC/BASIC

CALL Trigger (boardID%, address%)

Windows Format

C

void Trigger (int boardID, Addr4882_t address)

Visual Basic

CALL Trigger (boardID%, address%)

Direct Entry with C

DLLTrigger (int boardID, Addr4882_t address, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLTrigger Lib "gpib.dll"
(ByVal boardID%, ByVal address%, ibsta%, iberr%,
 ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-78 © National Instruments Corp.

Trigger Trigger
(Continued)

Input

 boardID The interface board number

 address Address of a device to be triggered

Description

Trigger sends the Group Execute Trigger (GET) GPIB message to the device
described by address. If address is the constant NOADDR, the Group Execute
Trigger message is sent to all devices that are currently listen-active on the GPIB.

Possible Errors

EARG The address parameter is invalid (out of range).

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-79 NI-488.2 FRM for DOS/Windows

TriggerList TriggerList

Purpose

Trigger multiple devices.

DOS Format

C

void TriggerList (int boardID, Addr4882_t addrlist[])

QuickBASIC/BASIC

CALL TriggerList (boardID%, addrlist%())

BASICA

CALL TriggerList (boardID%, addrlist%(0))

Windows Format

C

void TriggerList (int boardID, Addr4882_t addrlist[])

Visual Basic

CALL TriggerList (boardID%, addrlist%())

Direct Entry with C

DLLTriggerList (int boardID, Addr4882_t _far addrlist[],
 int _far *ibsta, int _far *iberr,
 long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLTriggerList Lib "gpib.dll"
(ByVal boardID%, addrlist%, ibsta%, iberr%,
 ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-80 © National Instruments Corp.

TriggerList TriggerList
(Continued)

Input

 boardID The interface board number

 addrlist A list of device addresses terminated by NOADDR

Description

TriggerList sends the Group Execute Trigger (GET) GPIB message to the devices
included in addrlist. If addrlist contains only NOADDR, the Group Execute
Trigger message is sent to all devices that are currently listen-active on the GPIB.

Possible Errors

EARG An invalid address (out of range) appears in addrlist;
ibcntl is the index of the invalid address in the addrlist
array.

EBUS No devices are connected to the GPIB.

ECIC The interface board is not the Controller-In-Charge; see
SendIFC.

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

EOIP Asynchronous I/O is in progress.

Chapter 2 NI-488.2 Routines

© National Instruments Corp. 2-81 NI-488.2 FRM for DOS/Windows

WaitSRQ WaitSRQ

Purpose

Wait until a device asserts the GPIB Service Request (SRQ) line.

DOS Format

C

void WaitSRQ (int boardID, short *result)

BASICA/QuickBASIC/BASIC

CALL WaitSRQ (boardID%, result%)

Windows Format

C

void WaitSRQ (int boardID, short *result)

Visual Basic

CALL WaitSRQ (boardID%, result%)

Direct Entry with C

DLLWaitSRQ (int boardID, short _far *result, int _far *ibsta,
 int _far *iberr, long _far *ibcntl)

Direct Entry with Visual Basic

Declare Sub DLLWaitSRQ Lib "gpib.dll"
(ByVal boardID%, result%, ibsta%, iberr%, ibcntl&)

NI-488.2 Routines Chapter 2

NI-488.2 FRM for DOS/Windows 2-82 © National Instruments Corp.

WaitSRQ WaitSRQ
(Continued)

Input

 boardID The interface board number

Output

 result State of the SRQ line: non-zero if line is asserted, zero if line
not asserted

Description

WaitSRQ waits until either the GPIB SRQ line is asserted or the timeout period has
expired (see ibtmo). When WaitSRQ returns, result contains a non-zero value if
SRQ is asserted. Otherwise, result contains a zero. Use TestSRQ to get the current
state of the GPIB SRQ line. Use WaitSRQ to wait until SRQ is asserted.

Possible Errors

EDVR Either boardID is invalid (out of range) or the NI-488.2
driver is not installed.

ENEB The interface board is not installed or is not properly
configured.

© National Instruments Corp. A-1 NI-488.2 FRM for DOS/Windows

Appendix A
Multiline Interface Messages

This appendix contains a multiline interface message reference list, which describes the
mnemonics and messages that correspond to the interface functions. These multiline
interface messages are sent and received with ATN TRUE.

For more information on these messages, refer to the ANSI/IEEE Standard 488.1-1987,
IEEE Standard Digital Interface for Programmable Instrumentation.

Multiline Interface Messages Appendix A

NI-488.2 FRM for DOS/Windows A-2 © National Instruments Corp.

Multiline Interface Messages

Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

00 000 0 NUL 20 040 32 SP MLA0
01 001 1 SOH GTL 21 041 33 ! MLA1
02 002 2 STX 22 042 34 " MLA2
03 003 3 ETX 23 043 35 # MLA3
04 004 4 EOT SDC 24 044 36 $ MLA4
05 005 5 ENQ PPC 25 045 37 % MLA5
06 006 6 ACK 26 046 38 & MLA6
07 007 7 BEL 27 047 39 ' MLA7

08 010 8 BS GET 28 050 40 (MLA8
09 011 9 HT TCT 29 051 41) MLA9
0A 012 10 LF 2A 052 42 * MLA10
0B 013 11 VT 2B 053 43 + MLA11
0C 014 12 FF 2C 054 44 , MLA12
0D 015 13 CR 2D 055 45 - MLA13
0E 016 14 SO 2E 056 46 . MLA14
0F 017 15 SI 2F 057 47 / MLA15

10 020 16 DLE 30 060 48 0 MLA16
11 021 17 DC1 LLO 31 061 49 1 MLA17
12 022 18 DC2 32 062 50 2 MLA18
13 023 19 DC3 33 063 51 3 MLA19
14 024 20 DC4 DCL 34 064 52 4 MLA20
15 025 21 NAK PPU 35 065 53 5 MLA21
16 026 22 SYN 36 066 54 6 MLA22
17 027 23 ETB 37 067 55 7 MLA23

18 030 24 CAN SPE 38 070 56 8 MLA24
19 031 25 EM SPD 39 071 57 9 MLA25
1A 032 26 SUB 3A 072 58 : MLA26
1B 033 27 ESC 3B 073 59 ; MLA27
1C 034 28 FS 3C 074 60 < MLA28
1D 035 29 GS 3D 075 61 = MLA29
1E 036 30 RS 3E 076 62 > MLA30
1F 037 31 US CFE 3F 077 63 ? UNL

Message Definitions
CFE† Configuration Enable
CFG† Configure
DCL Device Clear
GET Group Execute Trigger
GTL Go To Local
LLO Local Lockout

MLA My Listen Address
MSA My Secondary Address
MTA My Talk Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable

†This multiline interface message is a proposed extension to the IEEE 488.1 specification
to support the HS488 high-speed protocol.

Appendix A Multiline Interface Messages

© National Instruments Corp. A-3 NI-488.2 FRM for DOS/Windows

Multiline Interface Messages

Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

40 100 64 @ MTA0 60 140 96 ` MSA0,PPE
41 101 65 A MTA1 61 141 97 a MSA1,PPE,CFG1
42 102 66 B MTA2 62 142 98 b MSA2,PPE, CFG2
43 103 67 C MTA3 63 143 99 c MSA3,PPE,CFG3
44 104 68 D MTA4 64 144 100 d MSA4,PPE,CFG4
45 105 69 E MTA5 65 145 101 e MSA5,PPE,CFG5
46 106 70 F MTA6 66 146 102 f MSA6,PPE,CFG6
47 107 71 G MTA7 67 147 103 g MSA7,PPE,CFG7

48 110 72 H MTA8 68 150 104 h MSA8,PPE,CFG8
49 111 73 I MTA9 69 151 105 i MSA9,PPE,CFG9
4A 112 74 J MTA10 6A 152 106 j MSA10,PPE,CFG10
4B 113 75 K MTA11 6B 153 107 k MSA11,PPE,CFG11
4C 114 76 L MTA12 6C 154 108 l MSA12,PPE,CFG12
4D 115 77 M MTA13 6D 155 109 m MSA13,PPE,CFG13
4E 116 78 N MTA14 6E 156 110 n MSA14,PPE,CFG14
4F 117 79 O MTA15 6F 157 111 o MSA15,PPE,CFG15

50 120 80 P MTA16 70 160 112 p MSA16,PPD
51 121 81 Q MTA17 71 161 113 q MSA17,PPD
52 122 82 R MTA18 72 162 114 r MSA18,PPD
53 123 83 S MTA19 73 163 115 s MSA19,PPD
54 124 84 T MTA20 74 164 116 t MSA20,PPD
55 125 85 U MTA21 75 165 117 u MSA21,PPD
56 126 86 V MTA22 76 166 118 v MSA22,PPD
57 127 87 W MTA23 77 167 119 w MSA23,PPD

58 130 88 X MTA24 78 170 120 x MSA24,PPD
59 131 89 Y MTA25 79 171 121 y MSA25,PPD
5A 132 90 Z MTA26 7A 172 122 z MSA26,PPD
5B 133 91 [MTA27 7B 173 123 { MSA27,PPD
5C 134 92 \ MTA28 7C 174 124 | MSA28,PPD
5D 135 93] MTA29 7D 175 125 } MSA29,PPD
5E 136 94 ^ MTA30 7E 176 126 ~ MSA30,PPD
5F 137 95 _ UNT 7F 177 127 DEL

PPE Parallel Poll Enable
PPU Parallel Poll Unconfigure
SDC Selected Device Clear
SPD Serial Poll Disable

SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© National Instruments Corp. B-1 NI-488.2 FRM for DOS/Windows

Appendix B
Status Word Conditions

This appendix gives a detailed description of the conditions reported in the status word,
ibsta.

For information about how to use ibsta in your application program, refer to Chapter 3,
Developing Your Application, in the NI-488.2 user manual.

If a function call returns an ENEB or EDVR error, all status word bits except the ERR bit
are cleared, indicating that it is not possible to obtain the status of the GPIB board.

Each bit in ibsta can be set for NI-488 device calls (dev), NI-488 board calls and
NI-488.2 calls (brd), or both (dev, brd).

The following table lists the status word bits.

Table B-1. Status Word Bits

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

SPOLL 10 400 brd Board has been serial polled by
Controller

EVENT 9 200 brd DCAS, DTAS, or IFC event has occurred

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Status Word Conditions Appendix B

NI-488.2 FRM for DOS/Windows B-2 © National Instruments Corp.

ERR (dev, brd)

ERR is set in the status word following any call that results in an error. You can
determine the particular error by examining the error variable iberr. Appendix C,
Error Codes and Solutions, describes error codes that are recorded in iberr along with
possible solutions. ERR is cleared following any call that does not result in an error.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set in the status
word following an ibwait call if the TIMO bit of the ibwait mask parameter is set
and the time limit expires. TIMO is also set following any synchronous I/O functions
(for example, ibcmd, ibrd, ibwrt, Receive, Send, and SendCmds) if a timeout
occurs during one of these calls. TIMO is cleared in all other circumstances.

END (dev, brd)

END indicates that either the GPIB EOI line has been asserted or that the EOS byte has
been received, if the software is configured to terminate a read on an EOS byte. If the
GPIB board is performing a shadow handshake as a result of the ibgts function, any
other function can return a status word with the END bit set if the END condition occurs
before or during that call. END is cleared when any I/O operation is initiated.

Some applications might need to know the exact I/O read termination mode of a read
operation–EOI by itself, the EOS character by itself, or EOI plus the EOS character. You
can use the ibconfig function (option IbcEndBitIsNormal) to enable a mode in
which the END bit is set only when EOI is asserted. In this mode if the I/O operation
completes because of the EOS character by itself, END is not set. The application should
check the last byte of the received buffer to see if it is the EOS character.

SRQI (brd)

SRQI indicates that a GPIB device is requesting service. SRQI is set whenever the GPIB
board is CIC, the GPIB SRQ line is asserted, and the automatic serial poll capability is
disabled. SRQI is cleared either when the GPIB board ceases to be the CIC or when the
GPIB SRQ line is unasserted.

Appendix B Status Word Conditions

© National Instruments Corp. B-3 NI-488.2 FRM for DOS/Windows

RQS (dev)

RQS appears in the status word only after a device-level call. It indicates that one or
more serial poll response bytes are waiting in the device’s serial poll response queue.
Automatic serial poll responses are not stored in the response queue unless they have
bit 6 set.

An automatic serial poll occurs either as a result of a call to ibwait, or automatically, if
automatic serial polling is enabled. If the serial poll response queue is not empty, ibrsp
returns the oldest byte stored in the queue. To empty the response queue, call ibrsp
repeatedly until RQS is no longer set in the device's status word.

SPOLL (brd)

Use SPOLL in Talker/Listener applications (applications in which the GPIB interface is
not the Controller) to determine when the Controller has serial polled the GPIB board.
The SPOLL bit is disabled by default. Use the ibconfig function (option
IbcSPollBit) to enable it. When the SPOLL bit is enabled, it is set after the board
has been serial polled. SPOLL is cleared on any call immediately after an ibwait call,
if the SPOLL bit was set in the wait mask, or immediately following a call to ibrsv.

EVENT (brd)

Use EVENT in Talker/Listener applications to monitor the order of GPIB device clear,
group execute trigger, and send interface clear commands. The usual DCAS and DTAS
bits of ibsta might be insufficient.

The EVENT bit is disabled by default. If you want to use this bit, you must use the
ibconfig function (option IbcEventQueue) to enable it. When you enable this bit,
the DCAS and DTAS bits are disabled. When an event occurs, the EVENT bit is set and
any I/O in progress is aborted. The application can then call the ibevent function to
determine which event occurred.

CMPL (dev, brd)

CMPL indicates the condition of I/O operations. It is set whenever an I/O operation is
complete. CMPL is cleared while an I/O operation is in progress.

Status Word Conditions Appendix B

NI-488.2 FRM for DOS/Windows B-4 © National Instruments Corp.

LOK (brd)

LOK indicates whether the board is in a lockout state. While LOK is set, the
EnableLocal routine or ibloc function is inoperative for that board. LOK is set
whenever the GPIB board detects that the Local Lockout (LLO) message has been sent
either by the GPIB board or by another Controller. LOK is cleared when the System
Controller unasserts the Remote Enable (REN) GPIB line.

REM (brd)

REM indicates whether or not the board is in the remote state. REM is set whenever the
Remote Enable (REN) GPIB line is asserted and the GPIB board detects that its listen
address has been sent either by the GPIB board or by another Controller. REM is cleared
in the following situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Local (GTL) command has
been sent either by the GPIB board or by another Controller

• When the ibloc function is called while the LOK bit is cleared in the status word

CIC (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC is set when the
SendIFC routine or ibsic function is executed while the GPIB board is System
Controller or when another Controller passes control to the GPIB board. CIC is cleared
whenever the GPIB board detects Interface Clear (IFC) from the System Controller, or
when the GPIB board passes control to another device.

ATN (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set whenever the
GPIB ATN line is asserted, and it is cleared when the ATN line is unasserted.

TACS (brd)

TACS indicates whether the GPIB board is addressed as a Talker. TACS is set whenever
the GPIB board detects that its talk address (and secondary address, if enabled) has been
sent either by the GPIB board itself or by another Controller. TACS is cleared whenever
the GPIB board detects the Untalk (UNT) command, its own listen address, a talk address
other than its own talk address, or Interface Clear (IFC).

Appendix B Status Word Conditions

© National Instruments Corp. B-5 NI-488.2 FRM for DOS/Windows

LACS (brd)

LACS indicates whether the GPIB board is addressed as a Listener. LACS is set
whenever the GPIB board detects that its listen address (and secondary address, if
enabled) has been sent either by the GPIB board itself or by another Controller. LACS is
also set whenever the GPIB board shadow handshakes as a result of the ibgts function.
LACS is cleared whenever the GPIB board detects the Unlisten (UNL) command, its own
talk address, Interface Clear (IFC), or that the ibgts function has been called without
shadow handshake.

DTAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger command. DTAS
is set whenever the GPIB board, as a Listener, detects that the Group Execute Trigger
(GET) command has been sent by another Controller. DTAS is cleared on any call
immediately following an ibwait call, if the DTAS bit is set in the ibwait mask
parameter.

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear command. DCAS is
set whenever the GPIB board detects that the Device Clear (DCL) command has been
sent by another Controller, or whenever the GPIB board as a Listener detects that the
Selected Device Clear (SDC) command has been sent by another Controller. DCAS is
cleared on any call immediately following an ibwait call, if the DCAS bit was set in
the ibwait mask parameter. It also clears on any call immediately following a read or
write.

© National Instruments Corp. C-1 NI-488.2 FRM for DOS/Windows

Appendix C
Error Codes and Solutions

This appendix lists a description of each error, some conditions under which it might
occur, and possible solutions.

The following table lists the GPIB error codes.

Table C-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 Operating system error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 DMA error

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

EDVR (0)
NI-488.2 for DOS

EDVR is returned when the board or device name passed to ibfind is not configured in
the software. In this case, the variable ibcntl contains the system error code 2, Device
Not Found or 110, Open failed. EDVR is also returned when an invalid unit descriptor is
passed to any function call. In this case, the variable ibcntl contains the system error
code 6, Invalid handle. EDVR is also returned when the driver (gpib.com) is not
installed.

Error Codes and Solutions Appendix C

NI-488.2 FRM for DOS/Windows C-2 © National Instruments Corp.

Solutions

• Use ibdev to open a device without specifying its symbolic name.

• Use only device or board names that are configured in the utility program ibconf as
parameters to the ibfind function.

• Use the unit descriptor returned from the ibfind function as the first parameter in
subsequent NI-488 functions. Examine the variable after the ibfind and before the
failing function to make sure it was not corrupted.

• Make sure the NI-488.2 driver is installed by checking the config.sys file in the
root directory. Make sure it contains the following line:

device=drive:\path\gpib.com

where drive is the drive (usually c) and path is the directory (for example,
at-gpib).

EDVR (0)
NI-488.2 for Windows

EDVR is returned in the following cases:

• The board or device name passed to ibfind is not configured in the software. In this
case, the variable ibcntl contains the DOS error code 2, Device Not Found.

• An invalid unit descriptor is passed to any function call. In this case, the variable
ibcntl contains the DOS error code 6, Invalid handle.

• The driver (gpib.dll) is not installed.

• The driver configuration file gpib.ini is not located in the windows directory. In
this case, the variable ibcntl contains the value -1.

• The driver file gpib.ini is in the windows directory but not compatible with the
driver file gpib.dll that you are using. In this case, the variable ibcntl contains
a negative value other than -1.

Solutions

• Use ibdev to open a device without specifying its symbolic name.

• Use only device or board names that are configured in the GPIB software
configuration utility as parameters to the ibfind function.

Appendix C Error Codes and Solutions

© National Instruments Corp. C-3 NI-488.2 FRM for DOS/Windows

• Use the unit descriptor returned from ibfind as the first parameter in subsequent
NI-488 functions. Examine the variable before the failing function to make sure the
function has not been corrupted.

• Make sure the NI-488.2 driver is installed by checking that gpib.dll and
gpib.ini are in the windows directory (usually c:\windows).

ECIC (1)

ECIC is returned when one of the following board functions or routines is called while
the board is not CIC:

• Any device-level NI-488 functions that affect the GPIB

• Any board-level NI-488 functions that issue GPIB command bytes such as ibcmd,
ibcmda, ibln, ibrpp

• ibcac, ibgts

• Any of the NI-488.2 routines that issue GPIB command bytes such as SendCmds,
PPoll, Send, Receive

Solutions

• Use ibsic or SendIFC to make the GPIB board become Controller-In-Charge on
the GPIB.

• Use ibrsc 1 to make sure your GPIB board is configured as System Controller.

• In multiple CIC situations, always be certain that the CIC bit appears in the status
word ibsta before attempting these calls. If it does not appear, you can perform an
ibwait (for CIC) call to delay further processing until control is passed to the board.

ENOL (2)

ENOL usually occurs when a write operation is attempted with no Listeners addressed.
For a device write, this error indicates that the GPIB address configured for that device in
the software does not match the GPIB address of any device connected to the bus, that the
GPIB cable is not connected to the device, or that the device is not powered on.

ENOL can also occur in situations in which the GPIB board is not the CIC and the
Controller asserts ATN before the write call in progress has ended.

Error Codes and Solutions Appendix C

NI-488.2 FRM for DOS/Windows C-4 © National Instruments Corp.

Solutions

• Make sure that the GPIB address of your device matches the GPIB address of the
device to which you want to write data.

• If you are not using device-level calls, make sure that your device is properly
addressed to listen before writing to it by using ibcmd or SendSetup.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of your devices are
powered on.

• If you are using device-level calls, call ibpad (and ibsad, if necessary) to match
the configured address to the device switch settings.

• Reduce the write byte count to that which is expected by the Controller.

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly addressing itself before
read and write functions. This error is usually associated with board-level functions.

EADR is also returned by the function ibgts when the shadow-handshake feature is
requested and the GPIB ATN line is already unasserted. In this case, the shadow
handshake is not possible and the error is returned to notify you of that fact.

Solutions

• Make sure that the GPIB board is addressed correctly before calling NI-488 board-
level ibrd or ibwrt, and NI-488.2 routines RcvRespMsg, or SendDataBytes.

• Avoid calling ibgts except immediately after an ibcmd call. (ibcmd causes ATN
to be asserted.)

EARG (4)

EARG results when an invalid argument is passed to a function call. The following are
some examples:

• ibtmo called with a value not in the range 0 through 17

• ibpad or ibsad called with primary or secondary addresses

• ibppc called with invalid parallel poll configurations

Appendix C Error Codes and Solutions

© National Instruments Corp. C-5 NI-488.2 FRM for DOS/Windows

• A board-level NI-488 call made with a valid device descriptor, or a device-level
NI-488 call made with a valid board descriptor

• An NI-488.2 routine called with an invalid address parameter

• PPollConfig called with an invalid data line or sense bit

Solutions

• Make sure that the parameters passed to the NI-488 function or NI-488.2 routine are
valid.

• Do not use a device descriptor in a board function or vice-versa.

ESAC (5)

ESAC results when ibsic, ibsre, SendIFC, or EnableRemote is called when the
GPIB board does not have System Controller capability.

Solutions

Give the GPIB board System Controller capability by calling ibrsc 1. You can also
configure that capability into the software using ibconf in DOS or the GPIB software
configuration utility in Windows.

EABO (6)

EABO indicates that an I/O operation has been canceled, usually due to a timeout
condition. Other causes for this error are calling ibstop or receiving the Device Clear
message from the CIC while performing an I/O operation.

Frequently, the I/O is not progressing (the Listener is not continuing to handshake or the
Talker has stopped talking), or the byte count in the call which timed out was more than
the other device was expecting.

Solutions

• Use the correct byte count in input functions or have the Talker use the END message
to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo.

• Make sure that you have configured your device to send data before you request data.

Error Codes and Solutions Appendix C

NI-488.2 FRM for DOS/Windows C-6 © National Instruments Corp.

ENEB (7)

ENEB occurs when no GPIB board exists at the I/O address specified in the configuration
program. This happens when the board is not physically plugged into the system, the I/O
address specified during configuration does not match the actual board setting, or there is
a system conflict with the base I/O address, or the Use This Interface field is set
incorrectly in ibconf in DOS or the GPIB software configuration utility in Windows.

Solutions

• Make sure there is a GPIB board in your computer that is properly configured both in
hardware and software at a free base I/O address.

• Make sure that the Use This Interface field is set to Yes in ibconf or the
GPIB software configuration utility.

EDMA (8)
NI-488.2 for Windows

EDMA occurs when an error occurs using DMA for data transfers. If your computer has
more than 16 MB of RAM and you do not have the National Instruments virtual GPIB
device (nivgpibd.386) installed, the NI-488.2 software returns EDMA if you are
using DMA and the data buffer is located in memory above 16 MB.

If you are using Windows 3.0, you are using DMA for data transfers, and you do not have
the National Instruments virtual DMA device (nivdmad.386) installed, the NI-488.2
software returns EDMA if you try to use DMA to transfer data.

Solutions

• Install the appropriate virtual device in the system.ini file in the Windows
directory in the [386Enh] section. The following line installs the virtual GPIB device:

device = drive:\path\nivgpibd.386

where drive and path describe the location of nivgpibd.386 on your hard drive.

• By default, only one GPIB board at a time can perform DMA. If you need to perform
DMA transfers on multiple GPIB boards at the same time, add a new section to your
system.ini file, [vgpibd]. In this section add the option
NumBoardsUsingDMA, and set it equal to the number of boards that will be
performing DMA. For example, if you want two boards to perform DMA
concurrently, add the following lines to the bottom of your system.ini file:

[vgpibd]
NumBoardsUsingDMA=2

Appendix C Error Codes and Solutions

© National Instruments Corp. C-7 NI-488.2 FRM for DOS/Windows

• To install the virtual DMA device, first change the default virtual DMA device line to a
remark line by adding a semicolon. Then add a line to install the National Instruments
virtual DMA device as follows:

;device = *vdmad
device = drive:\path\nivdmad.386

where drive and path describe the location of nivdmad.386 on your hard drive.

Note: You must restart Windows after you modify the system.ini file.

• Alternatively, you can correct the EDMA problem by disabling DMA in the software.
You can use ibdma to disable DMA.

EOIP (10)

EOIP occurs when an asynchronous I/O operation has not finished before some other call
is made. During asynchronous I/O, you can only use ibstop, ibwait, and ibonl or
perform other non-GPIB operations. Once the asynchronous I/O has begun, GPIB calls
other than ibstop, ibwait, or ibonl are strictly limited. If a call might interfere
with the I/O operation in progress, the driver returns EOIP.

Solutions

Resynchronize the driver and the application before making any further GPIB calls.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta contains CMPL then the driver and application
are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an operation or when a
particular capability has been disabled in the software and a call is made that requires the
capability.

Solutions

Check the validity of the call, or make sure your GPIB interface board and the driver both
have the needed capability.

Error Codes and Solutions Appendix C

NI-488.2 FRM for DOS/Windows C-8 © National Instruments Corp.

EFSO (12)

EFSO results when an ibrdf or ibwrtf call encounters a problem performing a file
operation. Specifically, this error indicates that the function is unable to open, create,
seek, write, or close the file being accessed. The specific DOS error code for this
condition is contained in ibcntl.

Solutions

• Make sure the filename, path, and drive that you specified are correct.

• Make sure that the access mode of the file is correct.

• Make sure there is enough room on the disk to hold the file.

EBUS (14)

EBUS results when certain GPIB bus errors occur during NI-488 device-level functions.
All device functions send command bytes to perform addressing and other bus
management. Devices are expected to accept these command bytes within the time limit
specified by the default configuration or the ibtmo function. EBUS results if a timeout
occurred while sending these command bytes.

Solutions

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered off instruments on the GPIB.

• If the timeout period is too short for the driver to send command bytes, increase the
timeout period.

ESTB (15)

ESTB is reported only by the ibrsp function. ESTB indicates that one or more serial
poll status bytes received from automatic serial polls have been discarded because of a
lack of storage space. Several older status bytes are available; however, the oldest is
being returned by the ibrsp call.

Solutions

• Call ibrsp more frequently to empty the queue.

• Disable autopolling with the ibconfig function, the ibconf utility in DOS, or the
GPIB software configuration utility in Windows.

Appendix C Error Codes and Solutions

© National Instruments Corp. C-9 NI-488.2 FRM for DOS/Windows

ESRQ (16)

ESRQ occurs only during the ibwait function. ESRQ indicates that a wait for RQS is
not possible because the GPIB SRQ line is stuck on. This situation can be caused by the
following events:

• Usually, a device unknown to the software is asserting SRQ. Because the software
does not know of this device, it can never serial poll the device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ line to be asserted.

• A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB problem, it does not
affect GPIB operations, except that you cannot depend on the RQS bit while the
condition lasts.

Solutions

Check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary.

ETAB (20)

ETAB occurs only during the FindLstn, FindRQS, and ibevent functions. ETAB
indicates that there was some problem with a table used by these functions.

• In the case of FindLstn, ETAB means that the given table did not have enough room
to hold all the addresses of the Listeners found.

• In the case of FindRQS, ETAB means that none of the devices in the given table were
requesting service.

• In the case of ibevent, ETAB means the event queue overflowed and event
information was lost.

Solutions

In the case of FindLstn, increase the size of result arrays. In the case of FindRQS,
check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary. In the case of ETAB returned from ibevent, call
ibevent more often to empty the queue.

© National Instruments Corp. D-1 NI-488.2 FRM for DOS/Windows

Appendix D
Customer Communication

For your convenience, this appendix contains forms to help you gather the information
necessary to help us solve technical problems you might have as well as a form you can
use to comment on the product documentation. Filling out a copy of the Technical
Support Form before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In
the U.S. and Canada, applications engineers are available Monday through Friday from
8:00 a.m. to 6:00 p.m. (central time). In other countries, contact the nearest branch office.
You may fax questions to us at any time.

Corporate Headquarters: (512) 795-8248
Technical Support Fax: (512) 794-5678

Branch Offices Phone Number Fax Number
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or
hardware, and use the completed copy of this form as a reference for your current
configuration. Completing this form accurately before contacting National Instruments
for technical support helps our applications engineers answer your questions more
efficiently.

If you are using any National Instruments hardware or software products related to this
problem, include the configuration forms from their user manuals. Include additional
pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM MB

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

National Instruments software product

Revision

Configuration

(continues)

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: NI-488.2™ Function Reference Manual for DOS/Windows

Edition Date: August 1996

Part Number: 320702C-01

Please comment on the completeness, clarity, and organization of the manual.

(continues)

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
(512) 794-5678

© National Instruments Corp. Glossary-1 NI-488.2 FRM for DOS/Windows

Glossary

Prefix Meaning Value

n-
µ-
m-
k-
M-

nano-
micro-
milli-
kilo-
mega-

10-9

10-6

10-3

103

106

A

acceptor handshake Listeners use this GPIB interface function to receive data, and
all devices use it to receive commands. See source handshake
and handshake.

access board The GPIB board that controls and communicates with the
devices on the bus that are attached to it.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with
respect to the execution of a program.

automatic serial polling A feature of the NI-488.2 software in which serial polls
(autopolling) are executed automatically by the driver whenever a device

asserts the GPIB SRQ line.

B

base I/O address See I/O address.

BIOS Basic Input/Output System.

board-level function A rudimentary function that performs a single operation.

Glossary

NI-488.2 FRM for DOS/Windows Glossary-2 © National Instruments Corp.

C

CFE Configuration Enable is the GPIB command which precedes
CFGn and is used to place devices into their configuration
mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE
and are used to configure all devices for the number of meters
of cable in the system so that HS488 transfers occur without
errors.

CIC See Controller-In-Charge.

Controller-In-Charge The device that manages the GPIB by sending interface
(CIC) messages to other devices.

CPU Central processing unit.

D

DAV (Data Valid) One of the three GPIB handshake lines. See handshake.

DCL Device Clear is the GPIB command used to reset the device or
internal functions of all devices. See SDC.

Device Clear See DCL.

device-level function A function that combines several rudimentary board
operations into one function so that the user does not have to
be concerned with bus management or other GPIB protocol
matters.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data
bytes from one device to another.

DLL Dynamic link library.

DMA High-speed data transfer between the GPIB
(direct memory access) board and memory that is not handled directly by the CPU.

Not available on some systems. See programmed I/O.

driver Device driver software installed within the operating system.

Glossary

© National Instruments Corp. Glossary-3 NI-488.2 FRM for DOS/Windows

E

END or END message A message that signals the end of a data string. END is sent
by asserting the GPIB End or Identify (EOI) line with the last
data byte.

EOI A GPIB line that is used to signal either the last byte of a data
message (END) or the parallel poll Identify (IDY) message.

EOS or EOS byte A 7- or 8-bit end-of-string character that is sent as the last byte
of a data message.

EOT End of transmission.

ESB The Event Status bit is part of the IEEE 488.2-defined status
byte which is received from a device responding to a serial
poll.

G

GET Group Execute Trigger is the GPIB command used to trigger a
device or internal function of an addressed Listener.

Go To Local See GTL.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.

GPIB address The address of a device on the GPIB, composed of a primary
address (MLA and MTA) and an optional secondary address
(MSA). The GPIB board has both a GPIB address and an I/O
address.

GPIB board Refers to the National Instruments family of GPIB interface
boards.

Group Executed Trigger See GET.

GTL Go To Local is the GPIB command used to place an addressed
Listener in local (front panel) control mode.

Glossary

NI-488.2 FRM for DOS/Windows Glossary-4 © National Instruments Corp.

H

handshake The mechanism used to transfer bytes from the Source
Handshake function of one device to the Acceptor Handshake
function of another device. The three GPIB lines DAV,
NRFD, and NDAC are used in an interlocked fashion to signal
the phases of the transfer, so that bytes can be sent
asynchronously (for example, without a clock) at the speed of
the slowest device.

For more information about handshaking, refer to the
ANSI/IEEE Standard 488.1-1987.

hex Hexadecimal; a number represented in base 16, for example
decimal 16 = hex 10.

high-level function See device-level function.

Hz Hertz.

I

ibcnt After each NI-488.2 I/O function, this global variable contains
the actual number of bytes transmitted.

ibconf The NI-488.2 driver configuration program for DOS.

iberr A global variable that contains the specific error code
associated with a function call that failed.

ibic The Interface Bus Interactive Control program for DOS is
used to communicate with GPIB devices, troubleshoot
problems, and develop your application.

ibsta At the end of each function call, this global variable (status
word) contains status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices
and used to manage the GPIB.

I/O (Input/Output) In the context of this manual, the transmission of commands or
messages between the computer via the GPIB board and other
devices on the GPIB.

Glossary

© National Instruments Corp. Glossary-5 NI-488.2 FRM for DOS/Windows

I/O address The address of the GPIB board from the point of view of the
CPU, as opposed to the GPIB address of the GPIB board.
Also called port address or board address.

ist An Individual Status bit of the status byte used in the Parallel
Poll Configure function.

K

KB Kilobytes.

L

LAD (Listen Address) See MLA.

language interface Code that enables an application program that uses NI-488
functions or NI-488.2 routines to access the driver.

listen address See MLA.

Listener A GPIB device that receives data messages from a Talker.

low-level function See board-level function.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined
status byte which is received from a device responding to a
serial poll.

MB Megabytes of memory.

memory-resident Resident in RAM.

Glossary

NI-488.2 FRM for DOS/Windows Glossary-6 © National Instruments Corp.

MLA A GPIB command used to address a device to be
(My Listen Address) a Listener. It can be any one of the 31 primary addresses.

MSA My Secondary Address is the GPIB command used to address
(My Secondary Address) a device to be a Listener or a Talker when extended (two byte)

addressing is used. The complete address is a MLA or MTA
address followed by an MSA address. There are 31 secondary
addresses for a total of 961 distinct listen or talk addresses for
devices.

MTA (My Talk Address) A GPIB command used to address a device to be a Talker. It
can be any one of the 31 primary addresses.

multitasking The concurrent processing of more than one program or task.

N

NDAC One of the three GPIB handshake lines. See
(Not Data Accepted) handshake.

NRFD One of the three GPIB handshake lines. See
(Not Ready For Data) handshake.

P

parallel poll The process of polling all configured devices at once and
reading a composite poll response. See serial poll.

PIO See programmed I/O.

PPC Parallel Poll Configure is the GPIB command
(Parallel Poll Configure) used to configure an addressed Listener to participate in polls.

PPD Parallel Poll Disable is the GPIB command used
(Parallel Poll Disable) to disable a configured device from participating in polls.

There are 16 PPD commands.

PPE Parallel Poll Enable is the GPIB command used
(Parallel Poll Enable) to enable a configured device to participate in polls and to

assign a DIO response line. There are 16 PPE commands.

Glossary

© National Instruments Corp. Glossary-7 NI-488.2 FRM for DOS/Windows

PPU Parallel Poll Unconfigure is the GPIB command
(Parallel Poll used to disable any device from participating in
Unconfigure) polls.

programmed I/O Low-speed data transfer between the GPIB board and memory
in which the CPU moves each data byte according to program
instructions. See DMA.

R

RAM Random-access memory.

resynchronize The NI-488.2 software and the user application must
resynchronize after asynchronous I/O operations have
completed.

RQS Request Service.

S

s Seconds.

SDC Selected Device Clear is the GPIB command used to reset
internal or device functions of an addressed Listener. See
DCL and IFC.

serial poll The process of polling and reading the status byte of one
device at a time. See parallel poll.

Service Request See SRQ.

source handshake The GPIB interface function that transmits data and
commands. Talkers use this function to send data, and the
Controller uses it to send commands. See acceptor handshake
and handshake.

SPD Serial Poll Disable is the GPIB command used to
(Serial Poll Disable) cancel an SPE command.

Glossary

NI-488.2 FRM for DOS/Windows Glossary-8 © National Instruments Corp.

SPE Serial Poll Enable is the GPIB command used to
(Serial Poll Enable) enable a specific device to be polled. That device must also be

addressed to talk. See SPD.

SRQ (Service Request) The GPIB line that a device asserts to notify the CIC that the
device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is
serially polled.

status word See ibsta.

synchronous Refers to the relationship between the NI-488.2 driver
functions and a process when executing driver functions is
predictable; the process is blocked until the driver completes
the function.

System Controller The single designated Controller that can assert control
(become CIC of the GPIB) by sending the Interface Clear
(IFC) message. Other devices can become CIC only by
having control passed to them.

T

TAD (Talk Address) See MTA.

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control is the GPIB command used to pass control of the
bus from the current Controller to an addressed Talker.

timeout A feature of the NI-488.2 driver that prevents I/O functions
from hanging indefinitely when there is a problem on the
GPIB.

TLC An integrated circuit that implements most of the GPIB
Talker, Listener, and Controller functions in hardware.

Glossary

© National Instruments Corp. Glossary-9 NI-488.2 FRM for DOS/Windows

U

ud (unit descriptor) A variable name and first argument of each function call that
contains the unit descriptor of the GPIB interface board or
other GPIB device that is the object of the function.

UNL Unlisten is the GPIB command used to unaddress any active
Listeners.

UNT Untalk is the GPIB command used to unaddress an active
Talker.

© National Instruments Corp. Index-1 NI-488.2 FRM for DOS/Windows

Index

A

aborting asynchronous I/O operation. See ibstop function.
access board, changing. See ibbna function.
address functions/routines. See GPIB address functions/routines.
AllSpoll routine, 2-5 to 2-6
asynchronous I/O operation, aborting. See ibstop function.
ATN status word condition, B-4

C

CIC status word condition, B-4
clearing devices

DevClear routine, 2-7 to 2-8
DevClearList routine, 2-9 to 2-10
ibclr function, 1-21 to 1-22

CMPL status word condition, B-3
commands, sending

ibcmd function, 1-23 to 1-24
ibcmda function, 1-25 to 1-27

configuration parameters
changing. See ibconfig function.
returning. See ibask function.

control line status. See iblines function.
Controller functions/routines

ibcac function, 1-19 to 1-20
ibgts function, 1-53 to 1-54
ibpct, 1-69 to 1-70
ibrsc, 1-92 to 1-93
PassControl routine, 2-33 to 2-34

customer communication, xii, D-1

D

DCAS status word condition, B-5
DevClear routine, 2-7 to 2-8
DevClearList routine, 2-9 to 2-10
device descriptor, opening. See ibdev function.
DMA, enabling or disabling. See ibdma function.

Index

NI-488.2 FRM for DOS/Windows Index-2 © National Instruments Corp.

documentation
conventions used in manual, xi
how to use manual set, ix
organization of manual, x
related documentation, xii

DTAS status word condition, B-5

E

EABO error code, C-5
EADR error code, C-4
EARG error code, C-4 to C-5
EBUS error code, C-8
ECAP error code, C-7
ECIC error code, C-3
EDMA error code, C-6 to C-7
EDVR error code

for DOS, C-1 to C-2
for Windows, C-2 to C-3

EFSO error code, C-8
EnableLocal routine, 2-11 to 2-12
EnableRemote routine, 2-13 to 2-14
END status word condition, B-2
ENEB error code, C-6
ENOL error code, C-3 to C-4
EOI line assertion. See ibeot function.
EOIP error code, C-7
EOS termination mode or character. See ibeos function.
ERR status word condition, B-2
error codes and solutions

EABO, C-5
EADR, C-4
EARG, C-4 to C-5
EBUS, C-8
ECAP, C-7
ECIC, C-3
EDMA, C-6 to C-7
EDVR

for DOS, C-1 to C-2
for Windows, C-2 to C-3

EFSO, C-8
ENEB, C-6
ENOL, C-3 to C-4
EOIP, C-7
ESAC, C-5
ESRQ, C-9
ESTB, C-8
ETAB, C-9

Index

© National Instruments Corp. Index-3 NI-488.2 FRM for DOS/Windows

ESAC error code, C-5
ESRQ error code, C-9
ESTB error code, C-8
ETAB error code, C-9
EVENT status word condition, B-3
events, returning. See ibevent function.

F

fax technical support, D-1
finding boards, devices, or listeners

FindLstn routine, 2-15 to 2-17
FindRQS routine, 2-18 to 2-19
ibfind function, 1-51 to 1-52
ibln function, 1-60 to 1-62

FindLstn routine, 2-15 to 2-17
FindRQS routine, 2-18 to 2-19

G

GenerateREQT routine, 2-22 to 2-23
GotoMultAddr routine, 2-24 to 2-32

address selection function, 2-26
description, 2-25 to 2-27
example, 2-28 to 2-32
serial poll response function, 2-27

GPIB address functions/routines
GotoMultAddr routine, 2-24 to 2-32
ibpad, 1-67 to 1-68
ibsad, 1-99 to 1-100

I

ibask function, 1-7 to 1-16
board configuration parameter options (table), 1-10 to 1-13
description, 1-7 to 1-8
device configuration parameter options(table), 1-15 to 1-16
option constants

board configuration parameters, 1-9
device configuration parameters, 1-14

ibbna function, 1-17 to 1-18
ibcac function, 1-19 to 1-20
ibclr function, 1-21 to 1-22
ibcmd function, 1-23 to 1-24

Index

NI-488.2 FRM for DOS/Windows Index-4 © National Instruments Corp.

ibcmda function, 1-25 to 1-27
ibconfig function, 1-28 to 1-37

board configuration parameter options (table), 1-31 to 1-34
description, 1-28 to 1-29
device configuration parameter options (table), 1-35 to 1-37
option constants

board configuration parameters, 1-30
device configuration parameters, 1-35

ibdev function, 1-38 to 1-40
ibdma function, 1-41 to 1-42
ibeos function, 1-43 to 1-45
ibeot function, 1-46 to 1-47
ibevent function, 1-48 to 1-50
ibfind function, 1-51 to 1-52
ibgts function, 1-53 to 1-54
ibist function, 1-55 to 1-56
iblines function, 1-57 to 1-59
ibln function, 1-60 to 1-62
ibloc function, 1-63 to 1-64
ibonl function, 1-65 to 1-66
ibpad function, 1-67 to 1-68
ibpct function, 1-69 to 1-70
ibppc function, 1-71 to 1-73
ibrd function, 1-74 to 1-76
ibrda function, 1-77 to 1-79
ibrdf function, 1-80 to 1-82
ibrdi function, 1-83 to 1-85
ibrdia function, 1-86 to 1-89
ibrpp function, 1-90 to 1-91
ibrsc function, 1-92 to 1-93
ibrsp function, 1-94 to 1-96
ibrsv function, 1-97 to 1-98
ibsad function, 1-99 to 1-100
ibsic function, 1-101 to 1-102
ibsre function, 1-103 to 1-104
ibsrq function, 1-105
ibsta. See status word condition.
ibstop function, 1-106 to 1-107
ibtmo function, 1-108 to 1-110
ibtrap function, 1-111 to 1-112
ibtrg function, 1-113 to 1-114
ibwait function, 1-115 to 1-118
ibwrt function, 1-119 to 1-121
ibwrta function, 1-122 to 1-124
ibwrtf function, 1-125 to 1-127
ibwrti function, 1-128 to 1-130
ibwrtia function, 1-131 to 1-134
individual status bits. See ibist function.

Index

© National Instruments Corp. Index-5 NI-488.2 FRM for DOS/Windows

interface clear functions/routines
ibsic function, 1-101 to 1-102
SendIFC routine, 2-61 to 2-62

interface messages, multiline, A-1 to A-3

L

LACS status word condition, B-5
listeners. See Talker/Listener functions/routines.
Local Lockout message. See SendLLO routine.
local mode functions/routines

EnableLocal routine, 2-11 to 2-12
ibloc function, 1-63 to 1-64

LOK status word condition, B-4

M

manual. See documentation.
multiline interface messages, A-1 to A-3
multiple address routine. See GotoMultAddr routine.

N

NI-488 functions
DOS format, 1-1
ibask, 1-7 to 1-16
ibbna, 1-17 to 1-18
ibcac, 1-19 to 1-20
ibclr, 1-21 to 1-22
ibcmd, 1-23 to 1-24
ibcmda, 1-25 to 1-27
ibconfig, 1-28 to 1-37
ibdev, 1-38 to 1-40
ibdma, 1-41 to 1-42
ibeos, 1-43 to 1-45
ibeot, 1-46 to 1-47
ibevent, 1-48 to 1-50
ibfind, 1-51 to 1-52
ibgts, 1-53 to 1-54
ibist, 1-55 to 1-56
iblines, 1-57 to 1-59
ibln, 1-60 to 1-62
ibloc, 1-63 to 1-64
ibonl, 1-65 to 1-66

Index

NI-488.2 FRM for DOS/Windows Index-6 © National Instruments Corp.

ibpad, 1-67 to 1-68
ibpct, 1-69 to 1-70
ibppc, 1-71 to 1-73
ibrd, 1-74 to 1-76
ibrda, 1-77 to 1-79
ibrdf, 1-80 to 1-82
ibrdi, 1-83 to 1-85
ibrdia, 1-86 to 1-89
ibrpp, 1-90 to 1-91
ibrsc, 1-92 to 1-93
ibrsp, 1-94 to 1-96
ibrsv, 1-97 to 1-98
ibsad, 1-99 to 1-100
ibsic, 1-101 to 1-102
ibsre, 1-103 to 1-104
ibsrq, 1-105
ibstop, 1-106 to 1-107
ibtmo, 1-108 to 1-110
ibtrap, 1-111 to 1-112
ibtrg, 1-113 to 1-114
ibwait, 1-115 to 1-118
ibwrt, 1-119 to 1-121
ibwrta, 1-122 to 1-124
ibwrtf, 1-125 to 1-127
ibwrti, 1-128 to 1-130
ibwrtia, 1-131 to 1-134
list of functions (table)

board-level functions, 1-5 to 1-6
device-level functions, 1-3 to 1-4

Windows format, 1-2
NI-488.2 routines

AllSpoll, 2-5 to 2-6
DevClear, 2-7 to 2-8
DevClearList, 2-9 to 2-10
DOS format, 2-1
EnableLocal, 2-11 to 2-12
EnableRemote, 2-13 to 2-14
FindLstn, 2-15 to 2-17
FindRQS, 2-18 to 2-19
GenerateREQF, 2-20 to 2-21
GenerateREQT, 2-22 to 2-23
GotoMultAddr, 2-24 to 2-32
list of routines (table), 2-3 to 2-4
PassControl, 2-33 to 2-34
PPoll, 2-35 to 2-36
PPollConfig, 2-37 to 2-38
PPollUnconfig, 2-39 to 2-40
RcvRespMsg, 2-41 to 2-43
ReadStatusByte, 2-44 to 2-45

Index

© National Instruments Corp. Index-7 NI-488.2 FRM for DOS/Windows

Receive, 2-46 to 2-48
ReceiveSetup, 2-49 to 2-50
ResetSys, 2-51 to 2-52
Send, 2-53 to 2-56
SendCmds, 2-56 to 2-57
SendDataBytes, 2-58 to 2-60
SendIFC, 2-61 to 2-62
SendList, 2-63 to 2-65
SendLLO, 2-66 to 2-67
SendSetup, 2-68 to 2-69
SetRWLS, 2-70 to 2-71
TestSRQ, 2-72 to 2-73
TestSys, 2-74 to 2-76
Trigger, 2-77 to 2-78
TriggerList, 2-79 to 2-80
WaitSRQ, 2-81 to 2-82
Windows format, 2-2

O

online/offline function. See ibonl function.

P

parallel poll functions/routines
ibppc, 1-71 to 1-73
ibrpp, 1-90 to 1-91
PPoll routine, 2-35 to 2-36
PPollConfig routine, 2-37 to 2-38
PPollUnconfig routine, 2-39 to 2-40

PassControl routine, 2-33 to 2-34
PPoll routine, 2-35 to 2-36
PPollConfig routine, 2-37 to 2-38
PPollUnconfig routine, 2-39 to 2-40
primary address functions/routines

GotoMultAddr routine, 2-24 to 2-32
ibpad, 1-67 to 1-68

Index

NI-488.2 FRM for DOS/Windows Index-8 © National Instruments Corp.

R

RcvRespMsg routine, 2-41 to 2-43
read functions/routines

ibrd, 1-74 to 1-76
ibrda, 1-77 to 1-79
ibrdf, 1-80 to 1-82
ibrdi, 1-83 to 1-85
ibrdia, 1-86 to 1-89
RcvRespMsg routine, 2-41 to 2-43
Receive routine, 2-46 to 2-48

ReadStatusByte routine, 2-44 to 2-45
Receive routine, 2-46 to 2-48
ReceiveSetup routine, 2-49 to 2-50
REM status word condition, B-4
remote enable functions/routines

EnableRemote routine, 2-13 to 2-14
ibsre function, 1-103 to 1-104

Remote With Lockout State. See SetRWLS routine.
ResetSys routine, 2-51 to 2-52
RQS status word condition, B-3

S

secondary address functions/ routines
ibsad, 1-99 to 1-100

secondary address functions/routines
GotoMultAddr routine, 2-24 to 2-32

Send routine, 2-53 to 2-54
SendCmds routine, 2-56 to 2-57
SendDataBytes routine, 2-58 to 2-60
SendIFC routine, 2-61 to 2-62
SendList routine, 2-63 to 2-65
SendLLO routine, 2-66 to 2-67
SendSetup routine, 2-68 to 2-69
serial poll functions/routines

AllSpoll, 2-5 to 2-6
ibrsp, 1-94 to 1-96
ibrsv, 1-97 to 1-98
ReadStatusByte routine, 2-44 to 2-45

service request functions/routines
GenerateREQF routine, 2-20 to 2-21
GenerateREQT routine, 2-22 to 2-23
TestSRQ routine, 2-72 to 2-73

SetRWLS routine, 2-70 to 2-71

Index

© National Instruments Corp. Index-9 NI-488.2 FRM for DOS/Windows

software configuration parameters
changing. See ibconfig function.
returning. See ibask function.

SPOLL status word condition, B-3
SRQ functions/routines

ibsrq, 1-105
WaitSRQ routine, 2-81 to 2-82

SRQI status word condition, B-2
status word conditions

ATN, B-4
CIC, B-4
CMPL, B-3
DCAS, B-5
DTAS, B-5
END, B-2
ERR, B-2
EVENT, B-3
LACS, B-5
LOK, B-4
REM, B-4
RQS, B-3
SPOLL, B-3
SRQI, B-2
TACS, B-4
TIMO, B-2

System controller functions/routines. See Controller functions/routines.

T

TACS status word condition, B-4
Talker/Listener functions/routines

FindLstn routine, 2-15
ibln function, 1-60 to 1-62
RcvRespMsg routine, 2-41 to 2-43
ReceiveSetup routine, 2-49 to 2-50

technical support, D-1
TestSRQ routine, 2-72 to 2-73
TestSys routine, 2-74 to 2-76
timeout function. See ibtmo function.
TIMO status word condition, B-2
trap mode, changing. See ibtrap function.
trigger functions/routines

ibtrg, 1-113 to 1-114
Trigger routine, 2-77 to 2-78
TriggerList routine, 2-79 to 2-80

Index

NI-488.2 FRM for DOS/Windows Index-10 © National Instruments Corp.

W

wait functions/routines
ibwait function, 1-115 to 1-118
WaitSRQ routine, 2-81 to 2-82

write functions/routines
ibwrt, 1-119 to 1-121
ibwrta, 1-122 to 1-124
ibwrtf, 1-125 to 1-127
ibwrti, 1-128 to 1-130
ibwrtia, 1-131 to 1-134

	NI-488.2 TM Function Reference Manual for DOS/Windows
	Support
	Warranty
	Copyright

	Contents
	About This Manual
	Chapter 1 NI-488 Functions
	Chapter 2 NI-488.2 Routines
	Appendix A Multiline Interface Messages
	Appendix B Status Word Conditions
	Appendix C Error Codes and Solutions
	Appendix D Customer Communication
	Glossary
	Index

